Mechanical and Structural Properties of Graphene Oxide and Reduced Graphene Oxide Doped YBCO

YBCO (Y 1 Ba 2 Cu 3 O 7-δ ) was doped with graphene oxide (GO) and reduced graphene oxide (rGO) in the following percentage weight concentrations: 0.1, 0.5 and 1% wt.. Lattice parameters, crystallite size, orthorhombicity and lattice strain were calculated using XRD analysis. The porosity of samples...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2023-08, Vol.33 (5), p.1-10
Hauptverfasser: Gaffoor, M. Z., Jarvis, A.L.L, Swanson, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 33
creator Gaffoor, M. Z.
Jarvis, A.L.L
Swanson, A.
description YBCO (Y 1 Ba 2 Cu 3 O 7-δ ) was doped with graphene oxide (GO) and reduced graphene oxide (rGO) in the following percentage weight concentrations: 0.1, 0.5 and 1% wt.. Lattice parameters, crystallite size, orthorhombicity and lattice strain were calculated using XRD analysis. The porosity of samples decreased by a maximum of 29% and 17% for GO and rGO doped samples respectively. Microhardness measurements were conducted using the Vickers hardness method at loads in the range of 0.245 - 2.940 N. These micro hardness measurements were used to calculate the Vickers hardness ( H V ), elastic modulus ( E ), yield strength ( Y ), fracture toughness ( K IC ) and brittleness index ( B ) of the material. H V was greater in GO doped samples than in rGO doped samples. E increased by 63.94% for rGO and 85.52% for GO doped samples. Y increased by 63.80% for rGO and 85.40% for GO doped samples. B decreased by 48.11% for rGO and 43.78% for GO doped samples. There was an increase in K IC for both GO and rGO samples. The indentation size effect (ISE) was observed during micro-hardness measurements. This ISE behaviour was analyzed using Meyers Law, PSR model, elastic/plastic deformation model and Hays Kendall model. The results showed that the Hay Kendall approach best described the ISE behaviour of the samples.
doi_str_mv 10.1109/TASC.2023.3253464
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10061548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10061548</ieee_id><sourcerecordid>2797296835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-e27ccb493f352559113f20afb213cf95fac7a84bd905d15e64d76cce8e429cca3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFZ_gOAh4Dl1vybJHmusVahUbD0IwrLdnaUpNYmbBPTfm9oexNPMMM87Aw8hl4yOGKPqZjle5CNOuRgJDkIm8ogMGEAWc2Bw3PcUWJxxLk7JWdNsKGUykzAg709o16YsrNlGpnTRog2dbbvQj8-hqjG0BTZR5aNpMPUaS4zmX4XDX_YFXWfR_V_d9TEXvd3m83Ny4s22wYtDHZLX-8kyf4hn8-ljPp7FlivZxshTa1dSCS-AAyjGhOfU-BVnwnoF3tjUZHLlFAXHABPp0sRazFByZa0RQ3K9v1uH6rPDptWbqgtl_1LzVKVcJZmAnmJ7yoaqaQJ6XYfiw4RvzajeSdQ7iXonUR8k9pmrfaZAxD88TRjITPwAuANtbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2797296835</pqid></control><display><type>article</type><title>Mechanical and Structural Properties of Graphene Oxide and Reduced Graphene Oxide Doped YBCO</title><source>IEEE Electronic Library (IEL)</source><creator>Gaffoor, M. Z. ; Jarvis, A.L.L ; Swanson, A.</creator><creatorcontrib>Gaffoor, M. Z. ; Jarvis, A.L.L ; Swanson, A.</creatorcontrib><description>YBCO (Y 1 Ba 2 Cu 3 O 7-δ ) was doped with graphene oxide (GO) and reduced graphene oxide (rGO) in the following percentage weight concentrations: 0.1, 0.5 and 1% wt.. Lattice parameters, crystallite size, orthorhombicity and lattice strain were calculated using XRD analysis. The porosity of samples decreased by a maximum of 29% and 17% for GO and rGO doped samples respectively. Microhardness measurements were conducted using the Vickers hardness method at loads in the range of 0.245 - 2.940 N. These micro hardness measurements were used to calculate the Vickers hardness ( H V ), elastic modulus ( E ), yield strength ( Y ), fracture toughness ( K IC ) and brittleness index ( B ) of the material. H V was greater in GO doped samples than in rGO doped samples. E increased by 63.94% for rGO and 85.52% for GO doped samples. Y increased by 63.80% for rGO and 85.40% for GO doped samples. B decreased by 48.11% for rGO and 43.78% for GO doped samples. There was an increase in K IC for both GO and rGO samples. The indentation size effect (ISE) was observed during micro-hardness measurements. This ISE behaviour was analyzed using Meyers Law, PSR model, elastic/plastic deformation model and Hays Kendall model. The results showed that the Hay Kendall approach best described the ISE behaviour of the samples.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2023.3253464</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Crystallites ; Deformable models ; Diamond pyramid hardness ; Doping ; Elastic deformation ; Fracture toughness ; Graphene ; graphene oxide ; Heat treating ; Indentation ; Lattice parameters ; Lattice strain ; Lattices ; Mechanical factors ; Modulus of elasticity ; Plastic deformation ; porosity and YBCO ; Size effects ; vickers hardness ; X-ray scattering ; Yttrium barium copper oxide</subject><ispartof>IEEE transactions on applied superconductivity, 2023-08, Vol.33 (5), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-e27ccb493f352559113f20afb213cf95fac7a84bd905d15e64d76cce8e429cca3</citedby><cites>FETCH-LOGICAL-c294t-e27ccb493f352559113f20afb213cf95fac7a84bd905d15e64d76cce8e429cca3</cites><orcidid>0000-0002-9965-4746 ; 0000-0002-5125-7530 ; 0000-0002-1558-7508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10061548$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10061548$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gaffoor, M. Z.</creatorcontrib><creatorcontrib>Jarvis, A.L.L</creatorcontrib><creatorcontrib>Swanson, A.</creatorcontrib><title>Mechanical and Structural Properties of Graphene Oxide and Reduced Graphene Oxide Doped YBCO</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>YBCO (Y 1 Ba 2 Cu 3 O 7-δ ) was doped with graphene oxide (GO) and reduced graphene oxide (rGO) in the following percentage weight concentrations: 0.1, 0.5 and 1% wt.. Lattice parameters, crystallite size, orthorhombicity and lattice strain were calculated using XRD analysis. The porosity of samples decreased by a maximum of 29% and 17% for GO and rGO doped samples respectively. Microhardness measurements were conducted using the Vickers hardness method at loads in the range of 0.245 - 2.940 N. These micro hardness measurements were used to calculate the Vickers hardness ( H V ), elastic modulus ( E ), yield strength ( Y ), fracture toughness ( K IC ) and brittleness index ( B ) of the material. H V was greater in GO doped samples than in rGO doped samples. E increased by 63.94% for rGO and 85.52% for GO doped samples. Y increased by 63.80% for rGO and 85.40% for GO doped samples. B decreased by 48.11% for rGO and 43.78% for GO doped samples. There was an increase in K IC for both GO and rGO samples. The indentation size effect (ISE) was observed during micro-hardness measurements. This ISE behaviour was analyzed using Meyers Law, PSR model, elastic/plastic deformation model and Hays Kendall model. The results showed that the Hay Kendall approach best described the ISE behaviour of the samples.</description><subject>Crystallites</subject><subject>Deformable models</subject><subject>Diamond pyramid hardness</subject><subject>Doping</subject><subject>Elastic deformation</subject><subject>Fracture toughness</subject><subject>Graphene</subject><subject>graphene oxide</subject><subject>Heat treating</subject><subject>Indentation</subject><subject>Lattice parameters</subject><subject>Lattice strain</subject><subject>Lattices</subject><subject>Mechanical factors</subject><subject>Modulus of elasticity</subject><subject>Plastic deformation</subject><subject>porosity and YBCO</subject><subject>Size effects</subject><subject>vickers hardness</subject><subject>X-ray scattering</subject><subject>Yttrium barium copper oxide</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFZ_gOAh4Dl1vybJHmusVahUbD0IwrLdnaUpNYmbBPTfm9oexNPMMM87Aw8hl4yOGKPqZjle5CNOuRgJDkIm8ogMGEAWc2Bw3PcUWJxxLk7JWdNsKGUykzAg709o16YsrNlGpnTRog2dbbvQj8-hqjG0BTZR5aNpMPUaS4zmX4XDX_YFXWfR_V_d9TEXvd3m83Ny4s22wYtDHZLX-8kyf4hn8-ljPp7FlivZxshTa1dSCS-AAyjGhOfU-BVnwnoF3tjUZHLlFAXHABPp0sRazFByZa0RQ3K9v1uH6rPDptWbqgtl_1LzVKVcJZmAnmJ7yoaqaQJ6XYfiw4RvzajeSdQ7iXonUR8k9pmrfaZAxD88TRjITPwAuANtbw</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Gaffoor, M. Z.</creator><creator>Jarvis, A.L.L</creator><creator>Swanson, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9965-4746</orcidid><orcidid>https://orcid.org/0000-0002-5125-7530</orcidid><orcidid>https://orcid.org/0000-0002-1558-7508</orcidid></search><sort><creationdate>20230801</creationdate><title>Mechanical and Structural Properties of Graphene Oxide and Reduced Graphene Oxide Doped YBCO</title><author>Gaffoor, M. Z. ; Jarvis, A.L.L ; Swanson, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-e27ccb493f352559113f20afb213cf95fac7a84bd905d15e64d76cce8e429cca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Crystallites</topic><topic>Deformable models</topic><topic>Diamond pyramid hardness</topic><topic>Doping</topic><topic>Elastic deformation</topic><topic>Fracture toughness</topic><topic>Graphene</topic><topic>graphene oxide</topic><topic>Heat treating</topic><topic>Indentation</topic><topic>Lattice parameters</topic><topic>Lattice strain</topic><topic>Lattices</topic><topic>Mechanical factors</topic><topic>Modulus of elasticity</topic><topic>Plastic deformation</topic><topic>porosity and YBCO</topic><topic>Size effects</topic><topic>vickers hardness</topic><topic>X-ray scattering</topic><topic>Yttrium barium copper oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaffoor, M. Z.</creatorcontrib><creatorcontrib>Jarvis, A.L.L</creatorcontrib><creatorcontrib>Swanson, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gaffoor, M. Z.</au><au>Jarvis, A.L.L</au><au>Swanson, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and Structural Properties of Graphene Oxide and Reduced Graphene Oxide Doped YBCO</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>YBCO (Y 1 Ba 2 Cu 3 O 7-δ ) was doped with graphene oxide (GO) and reduced graphene oxide (rGO) in the following percentage weight concentrations: 0.1, 0.5 and 1% wt.. Lattice parameters, crystallite size, orthorhombicity and lattice strain were calculated using XRD analysis. The porosity of samples decreased by a maximum of 29% and 17% for GO and rGO doped samples respectively. Microhardness measurements were conducted using the Vickers hardness method at loads in the range of 0.245 - 2.940 N. These micro hardness measurements were used to calculate the Vickers hardness ( H V ), elastic modulus ( E ), yield strength ( Y ), fracture toughness ( K IC ) and brittleness index ( B ) of the material. H V was greater in GO doped samples than in rGO doped samples. E increased by 63.94% for rGO and 85.52% for GO doped samples. Y increased by 63.80% for rGO and 85.40% for GO doped samples. B decreased by 48.11% for rGO and 43.78% for GO doped samples. There was an increase in K IC for both GO and rGO samples. The indentation size effect (ISE) was observed during micro-hardness measurements. This ISE behaviour was analyzed using Meyers Law, PSR model, elastic/plastic deformation model and Hays Kendall model. The results showed that the Hay Kendall approach best described the ISE behaviour of the samples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2023.3253464</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9965-4746</orcidid><orcidid>https://orcid.org/0000-0002-5125-7530</orcidid><orcidid>https://orcid.org/0000-0002-1558-7508</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2023-08, Vol.33 (5), p.1-10
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_10061548
source IEEE Electronic Library (IEL)
subjects Crystallites
Deformable models
Diamond pyramid hardness
Doping
Elastic deformation
Fracture toughness
Graphene
graphene oxide
Heat treating
Indentation
Lattice parameters
Lattice strain
Lattices
Mechanical factors
Modulus of elasticity
Plastic deformation
porosity and YBCO
Size effects
vickers hardness
X-ray scattering
Yttrium barium copper oxide
title Mechanical and Structural Properties of Graphene Oxide and Reduced Graphene Oxide Doped YBCO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20Structural%20Properties%20of%20Graphene%20Oxide%20and%20Reduced%20Graphene%20Oxide%20Doped%20YBCO&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Gaffoor,%20M.%20Z.&rft.date=2023-08-01&rft.volume=33&rft.issue=5&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2023.3253464&rft_dat=%3Cproquest_RIE%3E2797296835%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2797296835&rft_id=info:pmid/&rft_ieee_id=10061548&rfr_iscdi=true