KSS-ICP: Point Cloud Registration based on Kendall Shape Space

Point cloud registration is a popular topic that has been widely used in 3D model reconstruction, location, and retrieval. In this paper, we propose a new registration method, KSS-ICP, to address the rigid registration task in Kendall shape space (KSS) with Iterative Closest Point (ICP). The KSS is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2023-01, Vol.PP, p.1-1
Hauptverfasser: Lv, Chenlei, Lin, Weisi, Zhao, Baoquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on image processing
container_volume PP
creator Lv, Chenlei
Lin, Weisi
Zhao, Baoquan
description Point cloud registration is a popular topic that has been widely used in 3D model reconstruction, location, and retrieval. In this paper, we propose a new registration method, KSS-ICP, to address the rigid registration task in Kendall shape space (KSS) with Iterative Closest Point (ICP). The KSS is a quotient space that removes influences of translations, scales, and rotations for shape feature-based analysis. Such influences can be concluded as the similarity transformations that do not change the shape feature. The point cloud representation in KSS is invariant to similarity transformations. We utilize such property to design the KSS-ICP for point cloud registration. To tackle the difficulty to achieve the KSS representation in general, the proposed KSS-ICP formulates a practical solution that does not require complex feature analysis, data training, and optimization. With a simple implementation, KSS-ICP achieves more accurate registration from point clouds. It is robust to similarity transformation, non-uniform density, noise, and defective parts. Experiments show that KSS-ICP has better performance than the state-of-the-art. Code 1 and executable files 2 are made public.
doi_str_mv 10.1109/TIP.2023.3251021
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10061449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10061449</ieee_id><sourcerecordid>2798708027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-5e01247884706e3a2979eb233fce13f7143f012a2df74cfd2adc7b9a385caeb23</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3ePYgEvHhJnf1IdteDIMGP0oLF1HPYJBNNSZOYTQ7-e7e0iniagXnel-Eh5JzClFLQN6vZcsqA8SlnAQVGD8iYakF9AMEO3Q6B9CUVekROrF0DUBHQ8JiMuASmQOgxuZvHsT-Llrfesinr3ouqZsi9V3wvbd-ZvmxqLzUWc88tc6xzU1Ve_GFa9OLWZHhKjgpTWTzbzwl5e3xYRc_-4uVpFt0v_IwL1fsBAmVCKiUkhMgN01JjyjgvMqS8cC_ywhGG5YUUWZEzk2cy1YarIDNbcEKud71t13wOaPtkU9oMq8rU2Aw2YVIrCQqYdOjVP3TdDF3tvnOUCoQIQqEcBTsq6xprOyyStis3pvtKKCRbt4lzm2zdJnu3LnK5Lx7SDea_gR-ZDrjYASUi_umDkAp3_gYmQ3oP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785445648</pqid></control><display><type>article</type><title>KSS-ICP: Point Cloud Registration based on Kendall Shape Space</title><source>IEEE Xplore</source><creator>Lv, Chenlei ; Lin, Weisi ; Zhao, Baoquan</creator><creatorcontrib>Lv, Chenlei ; Lin, Weisi ; Zhao, Baoquan</creatorcontrib><description>Point cloud registration is a popular topic that has been widely used in 3D model reconstruction, location, and retrieval. In this paper, we propose a new registration method, KSS-ICP, to address the rigid registration task in Kendall shape space (KSS) with Iterative Closest Point (ICP). The KSS is a quotient space that removes influences of translations, scales, and rotations for shape feature-based analysis. Such influences can be concluded as the similarity transformations that do not change the shape feature. The point cloud representation in KSS is invariant to similarity transformations. We utilize such property to design the KSS-ICP for point cloud registration. To tackle the difficulty to achieve the KSS representation in general, the proposed KSS-ICP formulates a practical solution that does not require complex feature analysis, data training, and optimization. With a simple implementation, KSS-ICP achieves more accurate registration from point clouds. It is robust to similarity transformation, non-uniform density, noise, and defective parts. Experiments show that KSS-ICP has better performance than the state-of-the-art. Code 1 and executable files 2 are made public.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2023.3251021</identifier><identifier>PMID: 37028049</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Deep learning ; Iterative methods ; Kendall shape space ; Manifolds ; Optimization ; Point cloud compression ; point cloud registration ; Registration ; Representations ; Shape ; Similarity ; Task analysis ; Three dimensional models ; Three-dimensional displays ; Training ; Transformations ; Translations</subject><ispartof>IEEE transactions on image processing, 2023-01, Vol.PP, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-5e01247884706e3a2979eb233fce13f7143f012a2df74cfd2adc7b9a385caeb23</citedby><cites>FETCH-LOGICAL-c348t-5e01247884706e3a2979eb233fce13f7143f012a2df74cfd2adc7b9a385caeb23</cites><orcidid>0000-0001-9866-1947 ; 0000-0002-0574-1663 ; 0000-0002-8203-3118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10061449$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10061449$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37028049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Chenlei</creatorcontrib><creatorcontrib>Lin, Weisi</creatorcontrib><creatorcontrib>Zhao, Baoquan</creatorcontrib><title>KSS-ICP: Point Cloud Registration based on Kendall Shape Space</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Point cloud registration is a popular topic that has been widely used in 3D model reconstruction, location, and retrieval. In this paper, we propose a new registration method, KSS-ICP, to address the rigid registration task in Kendall shape space (KSS) with Iterative Closest Point (ICP). The KSS is a quotient space that removes influences of translations, scales, and rotations for shape feature-based analysis. Such influences can be concluded as the similarity transformations that do not change the shape feature. The point cloud representation in KSS is invariant to similarity transformations. We utilize such property to design the KSS-ICP for point cloud registration. To tackle the difficulty to achieve the KSS representation in general, the proposed KSS-ICP formulates a practical solution that does not require complex feature analysis, data training, and optimization. With a simple implementation, KSS-ICP achieves more accurate registration from point clouds. It is robust to similarity transformation, non-uniform density, noise, and defective parts. Experiments show that KSS-ICP has better performance than the state-of-the-art. Code 1 and executable files 2 are made public.</description><subject>Deep learning</subject><subject>Iterative methods</subject><subject>Kendall shape space</subject><subject>Manifolds</subject><subject>Optimization</subject><subject>Point cloud compression</subject><subject>point cloud registration</subject><subject>Registration</subject><subject>Representations</subject><subject>Shape</subject><subject>Similarity</subject><subject>Task analysis</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>Transformations</subject><subject>Translations</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRbK3ePYgEvHhJnf1IdteDIMGP0oLF1HPYJBNNSZOYTQ7-e7e0iniagXnel-Eh5JzClFLQN6vZcsqA8SlnAQVGD8iYakF9AMEO3Q6B9CUVekROrF0DUBHQ8JiMuASmQOgxuZvHsT-Llrfesinr3ouqZsi9V3wvbd-ZvmxqLzUWc88tc6xzU1Ve_GFa9OLWZHhKjgpTWTzbzwl5e3xYRc_-4uVpFt0v_IwL1fsBAmVCKiUkhMgN01JjyjgvMqS8cC_ywhGG5YUUWZEzk2cy1YarIDNbcEKud71t13wOaPtkU9oMq8rU2Aw2YVIrCQqYdOjVP3TdDF3tvnOUCoQIQqEcBTsq6xprOyyStis3pvtKKCRbt4lzm2zdJnu3LnK5Lx7SDea_gR-ZDrjYASUi_umDkAp3_gYmQ3oP</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Lv, Chenlei</creator><creator>Lin, Weisi</creator><creator>Zhao, Baoquan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9866-1947</orcidid><orcidid>https://orcid.org/0000-0002-0574-1663</orcidid><orcidid>https://orcid.org/0000-0002-8203-3118</orcidid></search><sort><creationdate>20230101</creationdate><title>KSS-ICP: Point Cloud Registration based on Kendall Shape Space</title><author>Lv, Chenlei ; Lin, Weisi ; Zhao, Baoquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-5e01247884706e3a2979eb233fce13f7143f012a2df74cfd2adc7b9a385caeb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deep learning</topic><topic>Iterative methods</topic><topic>Kendall shape space</topic><topic>Manifolds</topic><topic>Optimization</topic><topic>Point cloud compression</topic><topic>point cloud registration</topic><topic>Registration</topic><topic>Representations</topic><topic>Shape</topic><topic>Similarity</topic><topic>Task analysis</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>Transformations</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Chenlei</creatorcontrib><creatorcontrib>Lin, Weisi</creatorcontrib><creatorcontrib>Zhao, Baoquan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lv, Chenlei</au><au>Lin, Weisi</au><au>Zhao, Baoquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KSS-ICP: Point Cloud Registration based on Kendall Shape Space</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>PP</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Point cloud registration is a popular topic that has been widely used in 3D model reconstruction, location, and retrieval. In this paper, we propose a new registration method, KSS-ICP, to address the rigid registration task in Kendall shape space (KSS) with Iterative Closest Point (ICP). The KSS is a quotient space that removes influences of translations, scales, and rotations for shape feature-based analysis. Such influences can be concluded as the similarity transformations that do not change the shape feature. The point cloud representation in KSS is invariant to similarity transformations. We utilize such property to design the KSS-ICP for point cloud registration. To tackle the difficulty to achieve the KSS representation in general, the proposed KSS-ICP formulates a practical solution that does not require complex feature analysis, data training, and optimization. With a simple implementation, KSS-ICP achieves more accurate registration from point clouds. It is robust to similarity transformation, non-uniform density, noise, and defective parts. Experiments show that KSS-ICP has better performance than the state-of-the-art. Code 1 and executable files 2 are made public.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37028049</pmid><doi>10.1109/TIP.2023.3251021</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9866-1947</orcidid><orcidid>https://orcid.org/0000-0002-0574-1663</orcidid><orcidid>https://orcid.org/0000-0002-8203-3118</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2023-01, Vol.PP, p.1-1
issn 1057-7149
1941-0042
language eng
recordid cdi_ieee_primary_10061449
source IEEE Xplore
subjects Deep learning
Iterative methods
Kendall shape space
Manifolds
Optimization
Point cloud compression
point cloud registration
Registration
Representations
Shape
Similarity
Task analysis
Three dimensional models
Three-dimensional displays
Training
Transformations
Translations
title KSS-ICP: Point Cloud Registration based on Kendall Shape Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KSS-ICP:%20Point%20Cloud%20Registration%20based%20on%20Kendall%20Shape%20Space&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Lv,%20Chenlei&rft.date=2023-01-01&rft.volume=PP&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3251021&rft_dat=%3Cproquest_RIE%3E2798708027%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785445648&rft_id=info:pmid/37028049&rft_ieee_id=10061449&rfr_iscdi=true