KSS-ICP: Point Cloud Registration based on Kendall Shape Space
Point cloud registration is a popular topic that has been widely used in 3D model reconstruction, location, and retrieval. In this paper, we propose a new registration method, KSS-ICP, to address the rigid registration task in Kendall shape space (KSS) with Iterative Closest Point (ICP). The KSS is...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2023-01, Vol.PP, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on image processing |
container_volume | PP |
creator | Lv, Chenlei Lin, Weisi Zhao, Baoquan |
description | Point cloud registration is a popular topic that has been widely used in 3D model reconstruction, location, and retrieval. In this paper, we propose a new registration method, KSS-ICP, to address the rigid registration task in Kendall shape space (KSS) with Iterative Closest Point (ICP). The KSS is a quotient space that removes influences of translations, scales, and rotations for shape feature-based analysis. Such influences can be concluded as the similarity transformations that do not change the shape feature. The point cloud representation in KSS is invariant to similarity transformations. We utilize such property to design the KSS-ICP for point cloud registration. To tackle the difficulty to achieve the KSS representation in general, the proposed KSS-ICP formulates a practical solution that does not require complex feature analysis, data training, and optimization. With a simple implementation, KSS-ICP achieves more accurate registration from point clouds. It is robust to similarity transformation, non-uniform density, noise, and defective parts. Experiments show that KSS-ICP has better performance than the state-of-the-art. Code 1 and executable files 2 are made public. |
doi_str_mv | 10.1109/TIP.2023.3251021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10061449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10061449</ieee_id><sourcerecordid>2798708027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-5e01247884706e3a2979eb233fce13f7143f012a2df74cfd2adc7b9a385caeb23</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3ePYgEvHhJnf1IdteDIMGP0oLF1HPYJBNNSZOYTQ7-e7e0iniagXnel-Eh5JzClFLQN6vZcsqA8SlnAQVGD8iYakF9AMEO3Q6B9CUVekROrF0DUBHQ8JiMuASmQOgxuZvHsT-Llrfesinr3ouqZsi9V3wvbd-ZvmxqLzUWc88tc6xzU1Ve_GFa9OLWZHhKjgpTWTzbzwl5e3xYRc_-4uVpFt0v_IwL1fsBAmVCKiUkhMgN01JjyjgvMqS8cC_ywhGG5YUUWZEzk2cy1YarIDNbcEKud71t13wOaPtkU9oMq8rU2Aw2YVIrCQqYdOjVP3TdDF3tvnOUCoQIQqEcBTsq6xprOyyStis3pvtKKCRbt4lzm2zdJnu3LnK5Lx7SDea_gR-ZDrjYASUi_umDkAp3_gYmQ3oP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785445648</pqid></control><display><type>article</type><title>KSS-ICP: Point Cloud Registration based on Kendall Shape Space</title><source>IEEE Xplore</source><creator>Lv, Chenlei ; Lin, Weisi ; Zhao, Baoquan</creator><creatorcontrib>Lv, Chenlei ; Lin, Weisi ; Zhao, Baoquan</creatorcontrib><description>Point cloud registration is a popular topic that has been widely used in 3D model reconstruction, location, and retrieval. In this paper, we propose a new registration method, KSS-ICP, to address the rigid registration task in Kendall shape space (KSS) with Iterative Closest Point (ICP). The KSS is a quotient space that removes influences of translations, scales, and rotations for shape feature-based analysis. Such influences can be concluded as the similarity transformations that do not change the shape feature. The point cloud representation in KSS is invariant to similarity transformations. We utilize such property to design the KSS-ICP for point cloud registration. To tackle the difficulty to achieve the KSS representation in general, the proposed KSS-ICP formulates a practical solution that does not require complex feature analysis, data training, and optimization. With a simple implementation, KSS-ICP achieves more accurate registration from point clouds. It is robust to similarity transformation, non-uniform density, noise, and defective parts. Experiments show that KSS-ICP has better performance than the state-of-the-art. Code 1 and executable files 2 are made public.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2023.3251021</identifier><identifier>PMID: 37028049</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Deep learning ; Iterative methods ; Kendall shape space ; Manifolds ; Optimization ; Point cloud compression ; point cloud registration ; Registration ; Representations ; Shape ; Similarity ; Task analysis ; Three dimensional models ; Three-dimensional displays ; Training ; Transformations ; Translations</subject><ispartof>IEEE transactions on image processing, 2023-01, Vol.PP, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-5e01247884706e3a2979eb233fce13f7143f012a2df74cfd2adc7b9a385caeb23</citedby><cites>FETCH-LOGICAL-c348t-5e01247884706e3a2979eb233fce13f7143f012a2df74cfd2adc7b9a385caeb23</cites><orcidid>0000-0001-9866-1947 ; 0000-0002-0574-1663 ; 0000-0002-8203-3118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10061449$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10061449$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37028049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Chenlei</creatorcontrib><creatorcontrib>Lin, Weisi</creatorcontrib><creatorcontrib>Zhao, Baoquan</creatorcontrib><title>KSS-ICP: Point Cloud Registration based on Kendall Shape Space</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Point cloud registration is a popular topic that has been widely used in 3D model reconstruction, location, and retrieval. In this paper, we propose a new registration method, KSS-ICP, to address the rigid registration task in Kendall shape space (KSS) with Iterative Closest Point (ICP). The KSS is a quotient space that removes influences of translations, scales, and rotations for shape feature-based analysis. Such influences can be concluded as the similarity transformations that do not change the shape feature. The point cloud representation in KSS is invariant to similarity transformations. We utilize such property to design the KSS-ICP for point cloud registration. To tackle the difficulty to achieve the KSS representation in general, the proposed KSS-ICP formulates a practical solution that does not require complex feature analysis, data training, and optimization. With a simple implementation, KSS-ICP achieves more accurate registration from point clouds. It is robust to similarity transformation, non-uniform density, noise, and defective parts. Experiments show that KSS-ICP has better performance than the state-of-the-art. Code 1 and executable files 2 are made public.</description><subject>Deep learning</subject><subject>Iterative methods</subject><subject>Kendall shape space</subject><subject>Manifolds</subject><subject>Optimization</subject><subject>Point cloud compression</subject><subject>point cloud registration</subject><subject>Registration</subject><subject>Representations</subject><subject>Shape</subject><subject>Similarity</subject><subject>Task analysis</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>Transformations</subject><subject>Translations</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRbK3ePYgEvHhJnf1IdteDIMGP0oLF1HPYJBNNSZOYTQ7-e7e0iniagXnel-Eh5JzClFLQN6vZcsqA8SlnAQVGD8iYakF9AMEO3Q6B9CUVekROrF0DUBHQ8JiMuASmQOgxuZvHsT-Llrfesinr3ouqZsi9V3wvbd-ZvmxqLzUWc88tc6xzU1Ve_GFa9OLWZHhKjgpTWTzbzwl5e3xYRc_-4uVpFt0v_IwL1fsBAmVCKiUkhMgN01JjyjgvMqS8cC_ywhGG5YUUWZEzk2cy1YarIDNbcEKud71t13wOaPtkU9oMq8rU2Aw2YVIrCQqYdOjVP3TdDF3tvnOUCoQIQqEcBTsq6xprOyyStis3pvtKKCRbt4lzm2zdJnu3LnK5Lx7SDea_gR-ZDrjYASUi_umDkAp3_gYmQ3oP</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Lv, Chenlei</creator><creator>Lin, Weisi</creator><creator>Zhao, Baoquan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9866-1947</orcidid><orcidid>https://orcid.org/0000-0002-0574-1663</orcidid><orcidid>https://orcid.org/0000-0002-8203-3118</orcidid></search><sort><creationdate>20230101</creationdate><title>KSS-ICP: Point Cloud Registration based on Kendall Shape Space</title><author>Lv, Chenlei ; Lin, Weisi ; Zhao, Baoquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-5e01247884706e3a2979eb233fce13f7143f012a2df74cfd2adc7b9a385caeb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deep learning</topic><topic>Iterative methods</topic><topic>Kendall shape space</topic><topic>Manifolds</topic><topic>Optimization</topic><topic>Point cloud compression</topic><topic>point cloud registration</topic><topic>Registration</topic><topic>Representations</topic><topic>Shape</topic><topic>Similarity</topic><topic>Task analysis</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>Transformations</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Chenlei</creatorcontrib><creatorcontrib>Lin, Weisi</creatorcontrib><creatorcontrib>Zhao, Baoquan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lv, Chenlei</au><au>Lin, Weisi</au><au>Zhao, Baoquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KSS-ICP: Point Cloud Registration based on Kendall Shape Space</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>PP</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Point cloud registration is a popular topic that has been widely used in 3D model reconstruction, location, and retrieval. In this paper, we propose a new registration method, KSS-ICP, to address the rigid registration task in Kendall shape space (KSS) with Iterative Closest Point (ICP). The KSS is a quotient space that removes influences of translations, scales, and rotations for shape feature-based analysis. Such influences can be concluded as the similarity transformations that do not change the shape feature. The point cloud representation in KSS is invariant to similarity transformations. We utilize such property to design the KSS-ICP for point cloud registration. To tackle the difficulty to achieve the KSS representation in general, the proposed KSS-ICP formulates a practical solution that does not require complex feature analysis, data training, and optimization. With a simple implementation, KSS-ICP achieves more accurate registration from point clouds. It is robust to similarity transformation, non-uniform density, noise, and defective parts. Experiments show that KSS-ICP has better performance than the state-of-the-art. Code 1 and executable files 2 are made public.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37028049</pmid><doi>10.1109/TIP.2023.3251021</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9866-1947</orcidid><orcidid>https://orcid.org/0000-0002-0574-1663</orcidid><orcidid>https://orcid.org/0000-0002-8203-3118</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2023-01, Vol.PP, p.1-1 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_ieee_primary_10061449 |
source | IEEE Xplore |
subjects | Deep learning Iterative methods Kendall shape space Manifolds Optimization Point cloud compression point cloud registration Registration Representations Shape Similarity Task analysis Three dimensional models Three-dimensional displays Training Transformations Translations |
title | KSS-ICP: Point Cloud Registration based on Kendall Shape Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KSS-ICP:%20Point%20Cloud%20Registration%20based%20on%20Kendall%20Shape%20Space&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Lv,%20Chenlei&rft.date=2023-01-01&rft.volume=PP&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3251021&rft_dat=%3Cproquest_RIE%3E2798708027%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785445648&rft_id=info:pmid/37028049&rft_ieee_id=10061449&rfr_iscdi=true |