Acquisition of Inducing Policy in Collaborative Robot Navigation Based on Multiagent Deep Reinforcement Learning
To avoid inefficient movement or the freezing problem in crowded environments, we previously proposed a human-aware interactive navigation method that uses inducement, i.e., voice reminders or physical touch. However, the use of inducement largely depends on many factors, including human attributes,...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Kamezaki, Mitsuhiro Ong, Ryan Sugano, Shigeki |
description | To avoid inefficient movement or the freezing problem in crowded environments, we previously proposed a human-aware interactive navigation method that uses inducement, i.e., voice reminders or physical touch. However, the use of inducement largely depends on many factors, including human attributes, task contents, and environmental contexts. Thus, it is unrealistic to pre-design a set of parameters such as the coefficients in the cost function, personal space, and velocity in accordance with the situation. To understand and evaluate if inducement (voice reminder in this study) is effective and how and when it must be used, we propose to comprehend them through multiagent deep reinforcement learning in which the robot voluntarily acquires an inducing policy suitable for the situation. Specifically, we evaluate whether a voice reminder can improve the time to reach the goal by learning when the robot uses it. Results of simulation experiments with four different situations show that the robot could learn inducing policies suited for each situation, and the effectiveness of inducement is greatly improved in more congested and narrow situations. |
doi_str_mv | 10.1109/ACCESS.2023.3253513 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10061379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10061379</ieee_id><doaj_id>oai_doaj_org_article_e7048566e2584b4baa33125f68118b32</doaj_id><sourcerecordid>2786975172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-e405c1be990930a3c3451f2209ebcb853e8f0d24709ce5f26189934b07ab56763</originalsourceid><addsrcrecordid>eNpNUV1rGzEQPEoDNWl-Qfog6LMdSXv6enSvaWNw2pCkz0KS94zM-WTr7gL59znnTMm-7DDMzC5MUVwzumCMmptlVd0-PS045bAALkAw-FTMOJNmDgLk5w_4S3HVdTs6jh4poWbFYRmOQ-xiH1NLUk1W7WYIsd2Sh9TE8EpiS6rUNM6n7Pr4guQx-dSTP-4lbt276YfrcENGcD80fXRbbHvyE_FAHjG2dcoB9ydqjS63Y_DX4qJ2TYdX531Z_Pt1-1zdzdd_f6-q5XoeSiX6OZZUBObRGGqAOghQClZzTg364LUA1DXd8FJRE1DUXDJtDJSeKueFVBIui9WUu0luZw857l1-tclF-06kvLUu9zE0aFHRUgspkQtd-tI7B8C4qKVmTHvgY9b3KeuQ03HArre7NOR2fN9ypaVRgqmTCiZVyKnrMtb_rzJqT03ZqSl7asqemxpd3yZXRMQPDioZKANvGaWObw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786975172</pqid></control><display><type>article</type><title>Acquisition of Inducing Policy in Collaborative Robot Navigation Based on Multiagent Deep Reinforcement Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kamezaki, Mitsuhiro ; Ong, Ryan ; Sugano, Shigeki</creator><creatorcontrib>Kamezaki, Mitsuhiro ; Ong, Ryan ; Sugano, Shigeki</creatorcontrib><description>To avoid inefficient movement or the freezing problem in crowded environments, we previously proposed a human-aware interactive navigation method that uses inducement, i.e., voice reminders or physical touch. However, the use of inducement largely depends on many factors, including human attributes, task contents, and environmental contexts. Thus, it is unrealistic to pre-design a set of parameters such as the coefficients in the cost function, personal space, and velocity in accordance with the situation. To understand and evaluate if inducement (voice reminder in this study) is effective and how and when it must be used, we propose to comprehend them through multiagent deep reinforcement learning in which the robot voluntarily acquires an inducing policy suitable for the situation. Specifically, we evaluate whether a voice reminder can improve the time to reach the goal by learning when the robot uses it. Results of simulation experiments with four different situations show that the robot could learn inducing policies suited for each situation, and the effectiveness of inducement is greatly improved in more congested and narrow situations.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3253513</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autonomous mobile robot ; Autonomous robots ; Collaborative robot navigation ; Cost function ; Deep learning ; Design parameters ; Freezing ; Inducing policy acquisition ; Mobile robots ; Multi-agent systems ; Multiagent deep reinforcement learning ; Multiagent systems ; Navigation ; Reinforcement learning ; Robot motion ; Robots ; Voice</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-e405c1be990930a3c3451f2209ebcb853e8f0d24709ce5f26189934b07ab56763</citedby><cites>FETCH-LOGICAL-c475t-e405c1be990930a3c3451f2209ebcb853e8f0d24709ce5f26189934b07ab56763</cites><orcidid>0000-0002-4377-8993 ; 0000-0002-9331-2446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10061379$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Kamezaki, Mitsuhiro</creatorcontrib><creatorcontrib>Ong, Ryan</creatorcontrib><creatorcontrib>Sugano, Shigeki</creatorcontrib><title>Acquisition of Inducing Policy in Collaborative Robot Navigation Based on Multiagent Deep Reinforcement Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>To avoid inefficient movement or the freezing problem in crowded environments, we previously proposed a human-aware interactive navigation method that uses inducement, i.e., voice reminders or physical touch. However, the use of inducement largely depends on many factors, including human attributes, task contents, and environmental contexts. Thus, it is unrealistic to pre-design a set of parameters such as the coefficients in the cost function, personal space, and velocity in accordance with the situation. To understand and evaluate if inducement (voice reminder in this study) is effective and how and when it must be used, we propose to comprehend them through multiagent deep reinforcement learning in which the robot voluntarily acquires an inducing policy suitable for the situation. Specifically, we evaluate whether a voice reminder can improve the time to reach the goal by learning when the robot uses it. Results of simulation experiments with four different situations show that the robot could learn inducing policies suited for each situation, and the effectiveness of inducement is greatly improved in more congested and narrow situations.</description><subject>Autonomous mobile robot</subject><subject>Autonomous robots</subject><subject>Collaborative robot navigation</subject><subject>Cost function</subject><subject>Deep learning</subject><subject>Design parameters</subject><subject>Freezing</subject><subject>Inducing policy acquisition</subject><subject>Mobile robots</subject><subject>Multi-agent systems</subject><subject>Multiagent deep reinforcement learning</subject><subject>Multiagent systems</subject><subject>Navigation</subject><subject>Reinforcement learning</subject><subject>Robot motion</subject><subject>Robots</subject><subject>Voice</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rGzEQPEoDNWl-Qfog6LMdSXv6enSvaWNw2pCkz0KS94zM-WTr7gL59znnTMm-7DDMzC5MUVwzumCMmptlVd0-PS045bAALkAw-FTMOJNmDgLk5w_4S3HVdTs6jh4poWbFYRmOQ-xiH1NLUk1W7WYIsd2Sh9TE8EpiS6rUNM6n7Pr4guQx-dSTP-4lbt276YfrcENGcD80fXRbbHvyE_FAHjG2dcoB9ydqjS63Y_DX4qJ2TYdX531Z_Pt1-1zdzdd_f6-q5XoeSiX6OZZUBObRGGqAOghQClZzTg364LUA1DXd8FJRE1DUXDJtDJSeKueFVBIui9WUu0luZw857l1-tclF-06kvLUu9zE0aFHRUgspkQtd-tI7B8C4qKVmTHvgY9b3KeuQ03HArre7NOR2fN9ypaVRgqmTCiZVyKnrMtb_rzJqT03ZqSl7asqemxpd3yZXRMQPDioZKANvGaWObw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Kamezaki, Mitsuhiro</creator><creator>Ong, Ryan</creator><creator>Sugano, Shigeki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4377-8993</orcidid><orcidid>https://orcid.org/0000-0002-9331-2446</orcidid></search><sort><creationdate>20230101</creationdate><title>Acquisition of Inducing Policy in Collaborative Robot Navigation Based on Multiagent Deep Reinforcement Learning</title><author>Kamezaki, Mitsuhiro ; Ong, Ryan ; Sugano, Shigeki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-e405c1be990930a3c3451f2209ebcb853e8f0d24709ce5f26189934b07ab56763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autonomous mobile robot</topic><topic>Autonomous robots</topic><topic>Collaborative robot navigation</topic><topic>Cost function</topic><topic>Deep learning</topic><topic>Design parameters</topic><topic>Freezing</topic><topic>Inducing policy acquisition</topic><topic>Mobile robots</topic><topic>Multi-agent systems</topic><topic>Multiagent deep reinforcement learning</topic><topic>Multiagent systems</topic><topic>Navigation</topic><topic>Reinforcement learning</topic><topic>Robot motion</topic><topic>Robots</topic><topic>Voice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamezaki, Mitsuhiro</creatorcontrib><creatorcontrib>Ong, Ryan</creatorcontrib><creatorcontrib>Sugano, Shigeki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamezaki, Mitsuhiro</au><au>Ong, Ryan</au><au>Sugano, Shigeki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acquisition of Inducing Policy in Collaborative Robot Navigation Based on Multiagent Deep Reinforcement Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To avoid inefficient movement or the freezing problem in crowded environments, we previously proposed a human-aware interactive navigation method that uses inducement, i.e., voice reminders or physical touch. However, the use of inducement largely depends on many factors, including human attributes, task contents, and environmental contexts. Thus, it is unrealistic to pre-design a set of parameters such as the coefficients in the cost function, personal space, and velocity in accordance with the situation. To understand and evaluate if inducement (voice reminder in this study) is effective and how and when it must be used, we propose to comprehend them through multiagent deep reinforcement learning in which the robot voluntarily acquires an inducing policy suitable for the situation. Specifically, we evaluate whether a voice reminder can improve the time to reach the goal by learning when the robot uses it. Results of simulation experiments with four different situations show that the robot could learn inducing policies suited for each situation, and the effectiveness of inducement is greatly improved in more congested and narrow situations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3253513</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4377-8993</orcidid><orcidid>https://orcid.org/0000-0002-9331-2446</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10061379 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Autonomous mobile robot Autonomous robots Collaborative robot navigation Cost function Deep learning Design parameters Freezing Inducing policy acquisition Mobile robots Multi-agent systems Multiagent deep reinforcement learning Multiagent systems Navigation Reinforcement learning Robot motion Robots Voice |
title | Acquisition of Inducing Policy in Collaborative Robot Navigation Based on Multiagent Deep Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acquisition%20of%20Inducing%20Policy%20in%20Collaborative%20Robot%20Navigation%20Based%20on%20Multiagent%20Deep%20Reinforcement%20Learning&rft.jtitle=IEEE%20access&rft.au=Kamezaki,%20Mitsuhiro&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3253513&rft_dat=%3Cproquest_ieee_%3E2786975172%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786975172&rft_id=info:pmid/&rft_ieee_id=10061379&rft_doaj_id=oai_doaj_org_article_e7048566e2584b4baa33125f68118b32&rfr_iscdi=true |