Base Station Dataset-Assisted Broadband Over-the-Air Aggregation for Communication-Efficient Federated Learning

This paper proposes an over-the-air aggregation framework for federated learning (FL) in broadband wireless networks where not only edge devices but also a base station (BS) has its own local dataset. The proposed framework leverages the BS dataset to improve communication efficiency of FL by reduci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2023-11, Vol.22 (11), p.1-1
Hauptverfasser: Hong, Jun-Pyo, Park, Sangjun, Choi, Wan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 11
container_start_page 1
container_title IEEE transactions on wireless communications
container_volume 22
creator Hong, Jun-Pyo
Park, Sangjun
Choi, Wan
description This paper proposes an over-the-air aggregation framework for federated learning (FL) in broadband wireless networks where not only edge devices but also a base station (BS) has its own local dataset. The proposed framework leverages the BS dataset to improve communication efficiency of FL by reducing the number of channel uses required for the model convergence as well as avoiding the signaling overhead incurred by power scale coordination among edge devices. We analyze the convergence to a stationary point without convexity assumption on the objective function. The analysis result reveals that the utilization of BS dataset improves the convergence rate and the update distortion caused by the limited power budget is a crucial factor hindering the model convergence. To facilitate the convergence, we develop an optimized power control method by solving the distortion minimization problem without assumptions on power scale coordination and global CSI at BS. Our simulation results validate that BS dataset is beneficial to reducing the number of channel uses for the model convergence and the developed power control method outperforms the conventional method in terms of both convergence rate and converged test accuracy. Furthermore, we identify some scenarios where the compression of local update can be helpful to reduce communication resources for model training.
doi_str_mv 10.1109/TWC.2023.3249252
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10058901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10058901</ieee_id><sourcerecordid>2889731062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-1b8700d48bbac3af52e6b8d476a6bf442e714ca3ee5cf2d45273cffee888abe33</originalsourceid><addsrcrecordid>eNpNkE1LwzAYx4soOKd3Dx4KnjPz2qbHbm4qDHZw4jGk7ZOa4ZqZZILf3tbu4Ol54f8CvyS5JXhGCC4etu-LGcWUzRjlBRX0LJkQISSilMvzYWcZIjTPLpOrEHYYkzwTYpK4uQ6QvkYdrevSRx37M6IyBBsiNOncO91UumvSzTd4FD8AldanZdt6aEePcT5duP3-2Nn674OWxtjaQhfTFTTg9RC0Bu0727XXyYXRnwFuTnOavK2W28UzWm-eXhblGtW0oBGRSuYYN1xWla6ZNoJCVsmG55nOKsM5hZzwWjMAURvacEFzVhsDIKXUFTA2Te7H3IN3X0cIUe3c0Xd9paJSFjkjOKO9Co-q2rsQPBh18Hav_Y8iWA1YVY9VDVjVCWtvuRstFgD-ybGQBSbsF917dWY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889731062</pqid></control><display><type>article</type><title>Base Station Dataset-Assisted Broadband Over-the-Air Aggregation for Communication-Efficient Federated Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Hong, Jun-Pyo ; Park, Sangjun ; Choi, Wan</creator><creatorcontrib>Hong, Jun-Pyo ; Park, Sangjun ; Choi, Wan</creatorcontrib><description>This paper proposes an over-the-air aggregation framework for federated learning (FL) in broadband wireless networks where not only edge devices but also a base station (BS) has its own local dataset. The proposed framework leverages the BS dataset to improve communication efficiency of FL by reducing the number of channel uses required for the model convergence as well as avoiding the signaling overhead incurred by power scale coordination among edge devices. We analyze the convergence to a stationary point without convexity assumption on the objective function. The analysis result reveals that the utilization of BS dataset improves the convergence rate and the update distortion caused by the limited power budget is a crucial factor hindering the model convergence. To facilitate the convergence, we develop an optimized power control method by solving the distortion minimization problem without assumptions on power scale coordination and global CSI at BS. Our simulation results validate that BS dataset is beneficial to reducing the number of channel uses for the model convergence and the developed power control method outperforms the conventional method in terms of both convergence rate and converged test accuracy. Furthermore, we identify some scenarios where the compression of local update can be helpful to reduce communication resources for model training.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2023.3249252</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Broadband ; Communication ; compressed update report ; Control methods ; Convergence ; Convexity ; Coordination ; dataset of base station ; Datasets ; Distortion ; Federated learning ; optimized power control ; over-the-air aggregation ; Power control ; Radio equipment ; Wireless networks</subject><ispartof>IEEE transactions on wireless communications, 2023-11, Vol.22 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-1b8700d48bbac3af52e6b8d476a6bf442e714ca3ee5cf2d45273cffee888abe33</citedby><cites>FETCH-LOGICAL-c292t-1b8700d48bbac3af52e6b8d476a6bf442e714ca3ee5cf2d45273cffee888abe33</cites><orcidid>0000-0001-7478-8513 ; 0000-0002-3866-908X ; 0000-0003-3930-7088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10058901$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10058901$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hong, Jun-Pyo</creatorcontrib><creatorcontrib>Park, Sangjun</creatorcontrib><creatorcontrib>Choi, Wan</creatorcontrib><title>Base Station Dataset-Assisted Broadband Over-the-Air Aggregation for Communication-Efficient Federated Learning</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>This paper proposes an over-the-air aggregation framework for federated learning (FL) in broadband wireless networks where not only edge devices but also a base station (BS) has its own local dataset. The proposed framework leverages the BS dataset to improve communication efficiency of FL by reducing the number of channel uses required for the model convergence as well as avoiding the signaling overhead incurred by power scale coordination among edge devices. We analyze the convergence to a stationary point without convexity assumption on the objective function. The analysis result reveals that the utilization of BS dataset improves the convergence rate and the update distortion caused by the limited power budget is a crucial factor hindering the model convergence. To facilitate the convergence, we develop an optimized power control method by solving the distortion minimization problem without assumptions on power scale coordination and global CSI at BS. Our simulation results validate that BS dataset is beneficial to reducing the number of channel uses for the model convergence and the developed power control method outperforms the conventional method in terms of both convergence rate and converged test accuracy. Furthermore, we identify some scenarios where the compression of local update can be helpful to reduce communication resources for model training.</description><subject>Broadband</subject><subject>Communication</subject><subject>compressed update report</subject><subject>Control methods</subject><subject>Convergence</subject><subject>Convexity</subject><subject>Coordination</subject><subject>dataset of base station</subject><subject>Datasets</subject><subject>Distortion</subject><subject>Federated learning</subject><subject>optimized power control</subject><subject>over-the-air aggregation</subject><subject>Power control</subject><subject>Radio equipment</subject><subject>Wireless networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LwzAYx4soOKd3Dx4KnjPz2qbHbm4qDHZw4jGk7ZOa4ZqZZILf3tbu4Ol54f8CvyS5JXhGCC4etu-LGcWUzRjlBRX0LJkQISSilMvzYWcZIjTPLpOrEHYYkzwTYpK4uQ6QvkYdrevSRx37M6IyBBsiNOncO91UumvSzTd4FD8AldanZdt6aEePcT5duP3-2Nn674OWxtjaQhfTFTTg9RC0Bu0727XXyYXRnwFuTnOavK2W28UzWm-eXhblGtW0oBGRSuYYN1xWla6ZNoJCVsmG55nOKsM5hZzwWjMAURvacEFzVhsDIKXUFTA2Te7H3IN3X0cIUe3c0Xd9paJSFjkjOKO9Co-q2rsQPBh18Hav_Y8iWA1YVY9VDVjVCWtvuRstFgD-ybGQBSbsF917dWY</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Hong, Jun-Pyo</creator><creator>Park, Sangjun</creator><creator>Choi, Wan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7478-8513</orcidid><orcidid>https://orcid.org/0000-0002-3866-908X</orcidid><orcidid>https://orcid.org/0000-0003-3930-7088</orcidid></search><sort><creationdate>20231101</creationdate><title>Base Station Dataset-Assisted Broadband Over-the-Air Aggregation for Communication-Efficient Federated Learning</title><author>Hong, Jun-Pyo ; Park, Sangjun ; Choi, Wan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-1b8700d48bbac3af52e6b8d476a6bf442e714ca3ee5cf2d45273cffee888abe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Broadband</topic><topic>Communication</topic><topic>compressed update report</topic><topic>Control methods</topic><topic>Convergence</topic><topic>Convexity</topic><topic>Coordination</topic><topic>dataset of base station</topic><topic>Datasets</topic><topic>Distortion</topic><topic>Federated learning</topic><topic>optimized power control</topic><topic>over-the-air aggregation</topic><topic>Power control</topic><topic>Radio equipment</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Jun-Pyo</creatorcontrib><creatorcontrib>Park, Sangjun</creatorcontrib><creatorcontrib>Choi, Wan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hong, Jun-Pyo</au><au>Park, Sangjun</au><au>Choi, Wan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Base Station Dataset-Assisted Broadband Over-the-Air Aggregation for Communication-Efficient Federated Learning</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>22</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>This paper proposes an over-the-air aggregation framework for federated learning (FL) in broadband wireless networks where not only edge devices but also a base station (BS) has its own local dataset. The proposed framework leverages the BS dataset to improve communication efficiency of FL by reducing the number of channel uses required for the model convergence as well as avoiding the signaling overhead incurred by power scale coordination among edge devices. We analyze the convergence to a stationary point without convexity assumption on the objective function. The analysis result reveals that the utilization of BS dataset improves the convergence rate and the update distortion caused by the limited power budget is a crucial factor hindering the model convergence. To facilitate the convergence, we develop an optimized power control method by solving the distortion minimization problem without assumptions on power scale coordination and global CSI at BS. Our simulation results validate that BS dataset is beneficial to reducing the number of channel uses for the model convergence and the developed power control method outperforms the conventional method in terms of both convergence rate and converged test accuracy. Furthermore, we identify some scenarios where the compression of local update can be helpful to reduce communication resources for model training.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2023.3249252</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7478-8513</orcidid><orcidid>https://orcid.org/0000-0002-3866-908X</orcidid><orcidid>https://orcid.org/0000-0003-3930-7088</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2023-11, Vol.22 (11), p.1-1
issn 1536-1276
1558-2248
language eng
recordid cdi_ieee_primary_10058901
source IEEE Electronic Library (IEL)
subjects Broadband
Communication
compressed update report
Control methods
Convergence
Convexity
Coordination
dataset of base station
Datasets
Distortion
Federated learning
optimized power control
over-the-air aggregation
Power control
Radio equipment
Wireless networks
title Base Station Dataset-Assisted Broadband Over-the-Air Aggregation for Communication-Efficient Federated Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Base%20Station%20Dataset-Assisted%20Broadband%20Over-the-Air%20Aggregation%20for%20Communication-Efficient%20Federated%20Learning&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Hong,%20Jun-Pyo&rft.date=2023-11-01&rft.volume=22&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2023.3249252&rft_dat=%3Cproquest_RIE%3E2889731062%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889731062&rft_id=info:pmid/&rft_ieee_id=10058901&rfr_iscdi=true