Ring-Masked Attention Network for Rotation-Invariant Template-Matching

To solve the rotational changes in matching localization of an underwater terrain image, this letter proposes the ring-masked attention network (RMANet), a model-driven deep network for rotational template-matching tasks. Since traditional convolutional neural networks cannot effectively encode rota...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2023-01, Vol.30, p.1-5
Hauptverfasser: Zhang, Feng, Bian, HongYu, Lv, Zheng, Zhai, YuFeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE signal processing letters
container_volume 30
creator Zhang, Feng
Bian, HongYu
Lv, Zheng
Zhai, YuFeng
description To solve the rotational changes in matching localization of an underwater terrain image, this letter proposes the ring-masked attention network (RMANet), a model-driven deep network for rotational template-matching tasks. Since traditional convolutional neural networks cannot effectively encode rotational changes, we introduce a rotation-equivariant network to extract the rotation-equivariant features. This network determines the rotation of an image at the pixel level. Based on the rotation-equivariant features, we propose the ring-masked attention module (RMAM), which combines the idea of the ring projection transform with an attention mechanism to extract the rotation-invariant features that are independent of the orientation. The overall model combines the rotation-equivariant network with RMAM into an end-to-end network that can exploit both the feature-representation capability of the learning-based model and domain knowledge. Our experimental results show that, compared with popular approaches targeting rotational matching tasks, RMANet achieves performance gains in terms of both matching accuracy and running speed.
doi_str_mv 10.1109/LSP.2023.3252406
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10058557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10058557</ieee_id><sourcerecordid>2793210986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-78c803f2c107ea47318c6c50eb59784c6b6c4eb42f322e49585d35e5b94c116b3</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EEqVw58AhEueUtR079rGqKFQqD5Vythx3A-kjLo4L4t_jqj1w2tVqZnb0EXJNYUAp6Lvp2-uAAeMDzgQrQJ6QHhVC5YxLepp2KCHXGtQ5uei6JQAoqkSPjGdN-5E_2W6Fi2wYI7ax8W32jPHHh1VW-5DNfLT7Yz5pv21obBuzOW62axsxGaP7TAmX5Ky26w6vjrNP3sf389FjPn15mIyG09wxzWJeKqeA18ylOmiLklPlpBOAldClKpyspCuwKljNGcNCCyUWXKCodOEolRXvk9tD7jb4rx120Sz9LrTppWGl5iyRUDKp4KBywXddwNpsQ7Ox4ddQMHtaJtEye1rmSCtZbg6WBhH_ySFVECX_A7UcZPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793210986</pqid></control><display><type>article</type><title>Ring-Masked Attention Network for Rotation-Invariant Template-Matching</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Feng ; Bian, HongYu ; Lv, Zheng ; Zhai, YuFeng</creator><creatorcontrib>Zhang, Feng ; Bian, HongYu ; Lv, Zheng ; Zhai, YuFeng</creatorcontrib><description>To solve the rotational changes in matching localization of an underwater terrain image, this letter proposes the ring-masked attention network (RMANet), a model-driven deep network for rotational template-matching tasks. Since traditional convolutional neural networks cannot effectively encode rotational changes, we introduce a rotation-equivariant network to extract the rotation-equivariant features. This network determines the rotation of an image at the pixel level. Based on the rotation-equivariant features, we propose the ring-masked attention module (RMAM), which combines the idea of the ring projection transform with an attention mechanism to extract the rotation-invariant features that are independent of the orientation. The overall model combines the rotation-equivariant network with RMAM into an end-to-end network that can exploit both the feature-representation capability of the learning-based model and domain knowledge. Our experimental results show that, compared with popular approaches targeting rotational matching tasks, RMANet achieves performance gains in terms of both matching accuracy and running speed.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2023.3252406</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Computational modeling ; Convolutional neural networks ; Feature extraction ; Invariants ; Location awareness ; ring-projection transform ; Rotation ; rotational equivariance ; rotational invariance ; Template matching ; Training ; Transforms ; Underwater vehicles</subject><ispartof>IEEE signal processing letters, 2023-01, Vol.30, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-78c803f2c107ea47318c6c50eb59784c6b6c4eb42f322e49585d35e5b94c116b3</citedby><cites>FETCH-LOGICAL-c292t-78c803f2c107ea47318c6c50eb59784c6b6c4eb42f322e49585d35e5b94c116b3</cites><orcidid>0000-0002-8661-8826 ; 0000-0002-0898-1603 ; 0000-0002-8345-3667 ; 0009-0004-8172-6862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10058557$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10058557$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Bian, HongYu</creatorcontrib><creatorcontrib>Lv, Zheng</creatorcontrib><creatorcontrib>Zhai, YuFeng</creatorcontrib><title>Ring-Masked Attention Network for Rotation-Invariant Template-Matching</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>To solve the rotational changes in matching localization of an underwater terrain image, this letter proposes the ring-masked attention network (RMANet), a model-driven deep network for rotational template-matching tasks. Since traditional convolutional neural networks cannot effectively encode rotational changes, we introduce a rotation-equivariant network to extract the rotation-equivariant features. This network determines the rotation of an image at the pixel level. Based on the rotation-equivariant features, we propose the ring-masked attention module (RMAM), which combines the idea of the ring projection transform with an attention mechanism to extract the rotation-invariant features that are independent of the orientation. The overall model combines the rotation-equivariant network with RMAM into an end-to-end network that can exploit both the feature-representation capability of the learning-based model and domain knowledge. Our experimental results show that, compared with popular approaches targeting rotational matching tasks, RMANet achieves performance gains in terms of both matching accuracy and running speed.</description><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Convolutional neural networks</subject><subject>Feature extraction</subject><subject>Invariants</subject><subject>Location awareness</subject><subject>ring-projection transform</subject><subject>Rotation</subject><subject>rotational equivariance</subject><subject>rotational invariance</subject><subject>Template matching</subject><subject>Training</subject><subject>Transforms</subject><subject>Underwater vehicles</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhC0EEqVw58AhEueUtR079rGqKFQqD5Vythx3A-kjLo4L4t_jqj1w2tVqZnb0EXJNYUAp6Lvp2-uAAeMDzgQrQJ6QHhVC5YxLepp2KCHXGtQ5uei6JQAoqkSPjGdN-5E_2W6Fi2wYI7ax8W32jPHHh1VW-5DNfLT7Yz5pv21obBuzOW62axsxGaP7TAmX5Ky26w6vjrNP3sf389FjPn15mIyG09wxzWJeKqeA18ylOmiLklPlpBOAldClKpyspCuwKljNGcNCCyUWXKCodOEolRXvk9tD7jb4rx120Sz9LrTppWGl5iyRUDKp4KBywXddwNpsQ7Ox4ddQMHtaJtEye1rmSCtZbg6WBhH_ySFVECX_A7UcZPY</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhang, Feng</creator><creator>Bian, HongYu</creator><creator>Lv, Zheng</creator><creator>Zhai, YuFeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8661-8826</orcidid><orcidid>https://orcid.org/0000-0002-0898-1603</orcidid><orcidid>https://orcid.org/0000-0002-8345-3667</orcidid><orcidid>https://orcid.org/0009-0004-8172-6862</orcidid></search><sort><creationdate>20230101</creationdate><title>Ring-Masked Attention Network for Rotation-Invariant Template-Matching</title><author>Zhang, Feng ; Bian, HongYu ; Lv, Zheng ; Zhai, YuFeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-78c803f2c107ea47318c6c50eb59784c6b6c4eb42f322e49585d35e5b94c116b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Convolutional neural networks</topic><topic>Feature extraction</topic><topic>Invariants</topic><topic>Location awareness</topic><topic>ring-projection transform</topic><topic>Rotation</topic><topic>rotational equivariance</topic><topic>rotational invariance</topic><topic>Template matching</topic><topic>Training</topic><topic>Transforms</topic><topic>Underwater vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Bian, HongYu</creatorcontrib><creatorcontrib>Lv, Zheng</creatorcontrib><creatorcontrib>Zhai, YuFeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Feng</au><au>Bian, HongYu</au><au>Lv, Zheng</au><au>Zhai, YuFeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ring-Masked Attention Network for Rotation-Invariant Template-Matching</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>30</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>To solve the rotational changes in matching localization of an underwater terrain image, this letter proposes the ring-masked attention network (RMANet), a model-driven deep network for rotational template-matching tasks. Since traditional convolutional neural networks cannot effectively encode rotational changes, we introduce a rotation-equivariant network to extract the rotation-equivariant features. This network determines the rotation of an image at the pixel level. Based on the rotation-equivariant features, we propose the ring-masked attention module (RMAM), which combines the idea of the ring projection transform with an attention mechanism to extract the rotation-invariant features that are independent of the orientation. The overall model combines the rotation-equivariant network with RMAM into an end-to-end network that can exploit both the feature-representation capability of the learning-based model and domain knowledge. Our experimental results show that, compared with popular approaches targeting rotational matching tasks, RMANet achieves performance gains in terms of both matching accuracy and running speed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2023.3252406</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8661-8826</orcidid><orcidid>https://orcid.org/0000-0002-0898-1603</orcidid><orcidid>https://orcid.org/0000-0002-8345-3667</orcidid><orcidid>https://orcid.org/0009-0004-8172-6862</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2023-01, Vol.30, p.1-5
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_10058557
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Computational modeling
Convolutional neural networks
Feature extraction
Invariants
Location awareness
ring-projection transform
Rotation
rotational equivariance
rotational invariance
Template matching
Training
Transforms
Underwater vehicles
title Ring-Masked Attention Network for Rotation-Invariant Template-Matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ring-Masked%20Attention%20Network%20for%20Rotation-Invariant%20Template-Matching&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Zhang,%20Feng&rft.date=2023-01-01&rft.volume=30&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2023.3252406&rft_dat=%3Cproquest_RIE%3E2793210986%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793210986&rft_id=info:pmid/&rft_ieee_id=10058557&rfr_iscdi=true