A Novel Model for Dynamic Manufacturing Service Collaboration on Industrial Internet
Industrial Internet enables distributed manufacturing enterprises to efficiently and promptly respond to the requirements of stakeholders using a manufacturing service collaboration chain (MSCC) composed of networked enterprises. However, various dynamic uncertainties may interrupt the MSCC, such as...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2023-12, Vol.19 (12), p.1-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | IEEE transactions on industrial informatics |
container_volume | 19 |
creator | Wang, Lei Luo, Zhengda Tang, Hongtao Guo, Shunsheng Li, Xixing |
description | Industrial Internet enables distributed manufacturing enterprises to efficiently and promptly respond to the requirements of stakeholders using a manufacturing service collaboration chain (MSCC) composed of networked enterprises. However, various dynamic uncertainties may interrupt the MSCC, such as device malfunctions, urgent order insertions, and dynamic logistics, resulting in inexactitude practical applications. This paper proposes a novel reliability-based dynamic manufacturing service collaboration optimization (R-DMSCO) model for uncertain manufacturing collaboration procedures on Industrial Internet. The RDMSCO model reformulates the MSCC reliability in the form of an expectation-standard deviation of uncertain job completion time described by discrete scenarios pertaining to the uncertain perturbation of processing time and logistics time. Subsequently, an enhanced multi-objective artificial bee colony (EMOABC) algorithm that embeds four improvements is intended to address the manufacturing service collaboration optimization (MSCO) problem. The experimental results demonstrate that EMOABC outperforms other typical multi-objective algorithms for MSCO problems. Additionally, the R-DMSCO model can cope with dynamic uncertainties with better robustness and stability than two other effective strategies for dynamic manufacturing service collaboration. |
doi_str_mv | 10.1109/TII.2023.3252408 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10058555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10058555</ieee_id><sourcerecordid>2879382401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-600982c5e4e2783941136cf132d13fe877129065ce3cccec03bd04c8961fbd333</originalsourceid><addsrcrecordid>eNpNkM1PwzAMxSMEEmNw58ChEucOJ27a5DiNr0kbHBjnKEtd1KlrRtpO2n9Ppu2AZNnv8J5t_Ri75zDhHPTTaj6fCBA4QSFFBuqCjbjOeAog4TJqKXmKAvCa3XTdBgALQD1iq2ny4ffUJEtfxl75kDwfWrutXbK07VBZ1w-hbn-SLwr72lEy801j1z7YvvZtEmvelkPXh9o2UfYUWupv2VVlm47uznPMvl9fVrP3dPH5Np9NF6kTWvRpDqCVcJIyEoXC-C3H3FUcRcmxIlUUXGjIpSN0zpEDXJeQOaVzXq1LRByzx9PeXfC_A3W92fghtPGkEarQqCIIHl1wcrnguy5QZXah3tpwMBzMkZ2J7MyRnTmzi5GHU6Qmon92kEpKiX_TT2mp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879382401</pqid></control><display><type>article</type><title>A Novel Model for Dynamic Manufacturing Service Collaboration on Industrial Internet</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Lei ; Luo, Zhengda ; Tang, Hongtao ; Guo, Shunsheng ; Li, Xixing</creator><creatorcontrib>Wang, Lei ; Luo, Zhengda ; Tang, Hongtao ; Guo, Shunsheng ; Li, Xixing</creatorcontrib><description>Industrial Internet enables distributed manufacturing enterprises to efficiently and promptly respond to the requirements of stakeholders using a manufacturing service collaboration chain (MSCC) composed of networked enterprises. However, various dynamic uncertainties may interrupt the MSCC, such as device malfunctions, urgent order insertions, and dynamic logistics, resulting in inexactitude practical applications. This paper proposes a novel reliability-based dynamic manufacturing service collaboration optimization (R-DMSCO) model for uncertain manufacturing collaboration procedures on Industrial Internet. The RDMSCO model reformulates the MSCC reliability in the form of an expectation-standard deviation of uncertain job completion time described by discrete scenarios pertaining to the uncertain perturbation of processing time and logistics time. Subsequently, an enhanced multi-objective artificial bee colony (EMOABC) algorithm that embeds four improvements is intended to address the manufacturing service collaboration optimization (MSCO) problem. The experimental results demonstrate that EMOABC outperforms other typical multi-objective algorithms for MSCO problems. Additionally, the R-DMSCO model can cope with dynamic uncertainties with better robustness and stability than two other effective strategies for dynamic manufacturing service collaboration.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2023.3252408</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; artificial bee colony algorithm ; Collaboration ; collaboration optimization ; Completion time ; Cooperation ; Dynamic stability ; Industrial Internet platform ; Internet ; Logistics ; Manufacturing ; manufacturing service collaboration chain (MSCC) ; Multiple objective analysis ; Optimization ; Perturbation ; R-DMSCO model ; Reliability ; Swarm intelligence ; Uncertainty</subject><ispartof>IEEE transactions on industrial informatics, 2023-12, Vol.19 (12), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-600982c5e4e2783941136cf132d13fe877129065ce3cccec03bd04c8961fbd333</citedby><cites>FETCH-LOGICAL-c292t-600982c5e4e2783941136cf132d13fe877129065ce3cccec03bd04c8961fbd333</cites><orcidid>0000-0001-5846-2564 ; 0000-0002-5796-3479 ; 0000-0002-1239-1518 ; 0000-0001-5027-8316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10058555$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10058555$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Luo, Zhengda</creatorcontrib><creatorcontrib>Tang, Hongtao</creatorcontrib><creatorcontrib>Guo, Shunsheng</creatorcontrib><creatorcontrib>Li, Xixing</creatorcontrib><title>A Novel Model for Dynamic Manufacturing Service Collaboration on Industrial Internet</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Industrial Internet enables distributed manufacturing enterprises to efficiently and promptly respond to the requirements of stakeholders using a manufacturing service collaboration chain (MSCC) composed of networked enterprises. However, various dynamic uncertainties may interrupt the MSCC, such as device malfunctions, urgent order insertions, and dynamic logistics, resulting in inexactitude practical applications. This paper proposes a novel reliability-based dynamic manufacturing service collaboration optimization (R-DMSCO) model for uncertain manufacturing collaboration procedures on Industrial Internet. The RDMSCO model reformulates the MSCC reliability in the form of an expectation-standard deviation of uncertain job completion time described by discrete scenarios pertaining to the uncertain perturbation of processing time and logistics time. Subsequently, an enhanced multi-objective artificial bee colony (EMOABC) algorithm that embeds four improvements is intended to address the manufacturing service collaboration optimization (MSCO) problem. The experimental results demonstrate that EMOABC outperforms other typical multi-objective algorithms for MSCO problems. Additionally, the R-DMSCO model can cope with dynamic uncertainties with better robustness and stability than two other effective strategies for dynamic manufacturing service collaboration.</description><subject>Algorithms</subject><subject>artificial bee colony algorithm</subject><subject>Collaboration</subject><subject>collaboration optimization</subject><subject>Completion time</subject><subject>Cooperation</subject><subject>Dynamic stability</subject><subject>Industrial Internet platform</subject><subject>Internet</subject><subject>Logistics</subject><subject>Manufacturing</subject><subject>manufacturing service collaboration chain (MSCC)</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Perturbation</subject><subject>R-DMSCO model</subject><subject>Reliability</subject><subject>Swarm intelligence</subject><subject>Uncertainty</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PwzAMxSMEEmNw58ChEucOJ27a5DiNr0kbHBjnKEtd1KlrRtpO2n9Ppu2AZNnv8J5t_Ri75zDhHPTTaj6fCBA4QSFFBuqCjbjOeAog4TJqKXmKAvCa3XTdBgALQD1iq2ny4ffUJEtfxl75kDwfWrutXbK07VBZ1w-hbn-SLwr72lEy801j1z7YvvZtEmvelkPXh9o2UfYUWupv2VVlm47uznPMvl9fVrP3dPH5Np9NF6kTWvRpDqCVcJIyEoXC-C3H3FUcRcmxIlUUXGjIpSN0zpEDXJeQOaVzXq1LRByzx9PeXfC_A3W92fghtPGkEarQqCIIHl1wcrnguy5QZXah3tpwMBzMkZ2J7MyRnTmzi5GHU6Qmon92kEpKiX_TT2mp</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Wang, Lei</creator><creator>Luo, Zhengda</creator><creator>Tang, Hongtao</creator><creator>Guo, Shunsheng</creator><creator>Li, Xixing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5846-2564</orcidid><orcidid>https://orcid.org/0000-0002-5796-3479</orcidid><orcidid>https://orcid.org/0000-0002-1239-1518</orcidid><orcidid>https://orcid.org/0000-0001-5027-8316</orcidid></search><sort><creationdate>20231201</creationdate><title>A Novel Model for Dynamic Manufacturing Service Collaboration on Industrial Internet</title><author>Wang, Lei ; Luo, Zhengda ; Tang, Hongtao ; Guo, Shunsheng ; Li, Xixing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-600982c5e4e2783941136cf132d13fe877129065ce3cccec03bd04c8961fbd333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>artificial bee colony algorithm</topic><topic>Collaboration</topic><topic>collaboration optimization</topic><topic>Completion time</topic><topic>Cooperation</topic><topic>Dynamic stability</topic><topic>Industrial Internet platform</topic><topic>Internet</topic><topic>Logistics</topic><topic>Manufacturing</topic><topic>manufacturing service collaboration chain (MSCC)</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Perturbation</topic><topic>R-DMSCO model</topic><topic>Reliability</topic><topic>Swarm intelligence</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Luo, Zhengda</creatorcontrib><creatorcontrib>Tang, Hongtao</creatorcontrib><creatorcontrib>Guo, Shunsheng</creatorcontrib><creatorcontrib>Li, Xixing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Lei</au><au>Luo, Zhengda</au><au>Tang, Hongtao</au><au>Guo, Shunsheng</au><au>Li, Xixing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Model for Dynamic Manufacturing Service Collaboration on Industrial Internet</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>19</volume><issue>12</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Industrial Internet enables distributed manufacturing enterprises to efficiently and promptly respond to the requirements of stakeholders using a manufacturing service collaboration chain (MSCC) composed of networked enterprises. However, various dynamic uncertainties may interrupt the MSCC, such as device malfunctions, urgent order insertions, and dynamic logistics, resulting in inexactitude practical applications. This paper proposes a novel reliability-based dynamic manufacturing service collaboration optimization (R-DMSCO) model for uncertain manufacturing collaboration procedures on Industrial Internet. The RDMSCO model reformulates the MSCC reliability in the form of an expectation-standard deviation of uncertain job completion time described by discrete scenarios pertaining to the uncertain perturbation of processing time and logistics time. Subsequently, an enhanced multi-objective artificial bee colony (EMOABC) algorithm that embeds four improvements is intended to address the manufacturing service collaboration optimization (MSCO) problem. The experimental results demonstrate that EMOABC outperforms other typical multi-objective algorithms for MSCO problems. Additionally, the R-DMSCO model can cope with dynamic uncertainties with better robustness and stability than two other effective strategies for dynamic manufacturing service collaboration.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2023.3252408</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5846-2564</orcidid><orcidid>https://orcid.org/0000-0002-5796-3479</orcidid><orcidid>https://orcid.org/0000-0002-1239-1518</orcidid><orcidid>https://orcid.org/0000-0001-5027-8316</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2023-12, Vol.19 (12), p.1-11 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_ieee_primary_10058555 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms artificial bee colony algorithm Collaboration collaboration optimization Completion time Cooperation Dynamic stability Industrial Internet platform Internet Logistics Manufacturing manufacturing service collaboration chain (MSCC) Multiple objective analysis Optimization Perturbation R-DMSCO model Reliability Swarm intelligence Uncertainty |
title | A Novel Model for Dynamic Manufacturing Service Collaboration on Industrial Internet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Model%20for%20Dynamic%20Manufacturing%20Service%20Collaboration%20on%20Industrial%20Internet&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Wang,%20Lei&rft.date=2023-12-01&rft.volume=19&rft.issue=12&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2023.3252408&rft_dat=%3Cproquest_RIE%3E2879382401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879382401&rft_id=info:pmid/&rft_ieee_id=10058555&rfr_iscdi=true |