A Novel Model for Dynamic Manufacturing Service Collaboration on Industrial Internet

Industrial Internet enables distributed manufacturing enterprises to efficiently and promptly respond to the requirements of stakeholders using a manufacturing service collaboration chain (MSCC) composed of networked enterprises. However, various dynamic uncertainties may interrupt the MSCC, such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2023-12, Vol.19 (12), p.1-11
Hauptverfasser: Wang, Lei, Luo, Zhengda, Tang, Hongtao, Guo, Shunsheng, Li, Xixing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 12
container_start_page 1
container_title IEEE transactions on industrial informatics
container_volume 19
creator Wang, Lei
Luo, Zhengda
Tang, Hongtao
Guo, Shunsheng
Li, Xixing
description Industrial Internet enables distributed manufacturing enterprises to efficiently and promptly respond to the requirements of stakeholders using a manufacturing service collaboration chain (MSCC) composed of networked enterprises. However, various dynamic uncertainties may interrupt the MSCC, such as device malfunctions, urgent order insertions, and dynamic logistics, resulting in inexactitude practical applications. This paper proposes a novel reliability-based dynamic manufacturing service collaboration optimization (R-DMSCO) model for uncertain manufacturing collaboration procedures on Industrial Internet. The RDMSCO model reformulates the MSCC reliability in the form of an expectation-standard deviation of uncertain job completion time described by discrete scenarios pertaining to the uncertain perturbation of processing time and logistics time. Subsequently, an enhanced multi-objective artificial bee colony (EMOABC) algorithm that embeds four improvements is intended to address the manufacturing service collaboration optimization (MSCO) problem. The experimental results demonstrate that EMOABC outperforms other typical multi-objective algorithms for MSCO problems. Additionally, the R-DMSCO model can cope with dynamic uncertainties with better robustness and stability than two other effective strategies for dynamic manufacturing service collaboration.
doi_str_mv 10.1109/TII.2023.3252408
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10058555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10058555</ieee_id><sourcerecordid>2879382401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-600982c5e4e2783941136cf132d13fe877129065ce3cccec03bd04c8961fbd333</originalsourceid><addsrcrecordid>eNpNkM1PwzAMxSMEEmNw58ChEucOJ27a5DiNr0kbHBjnKEtd1KlrRtpO2n9Ppu2AZNnv8J5t_Ri75zDhHPTTaj6fCBA4QSFFBuqCjbjOeAog4TJqKXmKAvCa3XTdBgALQD1iq2ny4ffUJEtfxl75kDwfWrutXbK07VBZ1w-hbn-SLwr72lEy801j1z7YvvZtEmvelkPXh9o2UfYUWupv2VVlm47uznPMvl9fVrP3dPH5Np9NF6kTWvRpDqCVcJIyEoXC-C3H3FUcRcmxIlUUXGjIpSN0zpEDXJeQOaVzXq1LRByzx9PeXfC_A3W92fghtPGkEarQqCIIHl1wcrnguy5QZXah3tpwMBzMkZ2J7MyRnTmzi5GHU6Qmon92kEpKiX_TT2mp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879382401</pqid></control><display><type>article</type><title>A Novel Model for Dynamic Manufacturing Service Collaboration on Industrial Internet</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Lei ; Luo, Zhengda ; Tang, Hongtao ; Guo, Shunsheng ; Li, Xixing</creator><creatorcontrib>Wang, Lei ; Luo, Zhengda ; Tang, Hongtao ; Guo, Shunsheng ; Li, Xixing</creatorcontrib><description>Industrial Internet enables distributed manufacturing enterprises to efficiently and promptly respond to the requirements of stakeholders using a manufacturing service collaboration chain (MSCC) composed of networked enterprises. However, various dynamic uncertainties may interrupt the MSCC, such as device malfunctions, urgent order insertions, and dynamic logistics, resulting in inexactitude practical applications. This paper proposes a novel reliability-based dynamic manufacturing service collaboration optimization (R-DMSCO) model for uncertain manufacturing collaboration procedures on Industrial Internet. The RDMSCO model reformulates the MSCC reliability in the form of an expectation-standard deviation of uncertain job completion time described by discrete scenarios pertaining to the uncertain perturbation of processing time and logistics time. Subsequently, an enhanced multi-objective artificial bee colony (EMOABC) algorithm that embeds four improvements is intended to address the manufacturing service collaboration optimization (MSCO) problem. The experimental results demonstrate that EMOABC outperforms other typical multi-objective algorithms for MSCO problems. Additionally, the R-DMSCO model can cope with dynamic uncertainties with better robustness and stability than two other effective strategies for dynamic manufacturing service collaboration.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2023.3252408</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; artificial bee colony algorithm ; Collaboration ; collaboration optimization ; Completion time ; Cooperation ; Dynamic stability ; Industrial Internet platform ; Internet ; Logistics ; Manufacturing ; manufacturing service collaboration chain (MSCC) ; Multiple objective analysis ; Optimization ; Perturbation ; R-DMSCO model ; Reliability ; Swarm intelligence ; Uncertainty</subject><ispartof>IEEE transactions on industrial informatics, 2023-12, Vol.19 (12), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-600982c5e4e2783941136cf132d13fe877129065ce3cccec03bd04c8961fbd333</citedby><cites>FETCH-LOGICAL-c292t-600982c5e4e2783941136cf132d13fe877129065ce3cccec03bd04c8961fbd333</cites><orcidid>0000-0001-5846-2564 ; 0000-0002-5796-3479 ; 0000-0002-1239-1518 ; 0000-0001-5027-8316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10058555$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10058555$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Luo, Zhengda</creatorcontrib><creatorcontrib>Tang, Hongtao</creatorcontrib><creatorcontrib>Guo, Shunsheng</creatorcontrib><creatorcontrib>Li, Xixing</creatorcontrib><title>A Novel Model for Dynamic Manufacturing Service Collaboration on Industrial Internet</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Industrial Internet enables distributed manufacturing enterprises to efficiently and promptly respond to the requirements of stakeholders using a manufacturing service collaboration chain (MSCC) composed of networked enterprises. However, various dynamic uncertainties may interrupt the MSCC, such as device malfunctions, urgent order insertions, and dynamic logistics, resulting in inexactitude practical applications. This paper proposes a novel reliability-based dynamic manufacturing service collaboration optimization (R-DMSCO) model for uncertain manufacturing collaboration procedures on Industrial Internet. The RDMSCO model reformulates the MSCC reliability in the form of an expectation-standard deviation of uncertain job completion time described by discrete scenarios pertaining to the uncertain perturbation of processing time and logistics time. Subsequently, an enhanced multi-objective artificial bee colony (EMOABC) algorithm that embeds four improvements is intended to address the manufacturing service collaboration optimization (MSCO) problem. The experimental results demonstrate that EMOABC outperforms other typical multi-objective algorithms for MSCO problems. Additionally, the R-DMSCO model can cope with dynamic uncertainties with better robustness and stability than two other effective strategies for dynamic manufacturing service collaboration.</description><subject>Algorithms</subject><subject>artificial bee colony algorithm</subject><subject>Collaboration</subject><subject>collaboration optimization</subject><subject>Completion time</subject><subject>Cooperation</subject><subject>Dynamic stability</subject><subject>Industrial Internet platform</subject><subject>Internet</subject><subject>Logistics</subject><subject>Manufacturing</subject><subject>manufacturing service collaboration chain (MSCC)</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Perturbation</subject><subject>R-DMSCO model</subject><subject>Reliability</subject><subject>Swarm intelligence</subject><subject>Uncertainty</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PwzAMxSMEEmNw58ChEucOJ27a5DiNr0kbHBjnKEtd1KlrRtpO2n9Ppu2AZNnv8J5t_Ri75zDhHPTTaj6fCBA4QSFFBuqCjbjOeAog4TJqKXmKAvCa3XTdBgALQD1iq2ny4ffUJEtfxl75kDwfWrutXbK07VBZ1w-hbn-SLwr72lEy801j1z7YvvZtEmvelkPXh9o2UfYUWupv2VVlm47uznPMvl9fVrP3dPH5Np9NF6kTWvRpDqCVcJIyEoXC-C3H3FUcRcmxIlUUXGjIpSN0zpEDXJeQOaVzXq1LRByzx9PeXfC_A3W92fghtPGkEarQqCIIHl1wcrnguy5QZXah3tpwMBzMkZ2J7MyRnTmzi5GHU6Qmon92kEpKiX_TT2mp</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Wang, Lei</creator><creator>Luo, Zhengda</creator><creator>Tang, Hongtao</creator><creator>Guo, Shunsheng</creator><creator>Li, Xixing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5846-2564</orcidid><orcidid>https://orcid.org/0000-0002-5796-3479</orcidid><orcidid>https://orcid.org/0000-0002-1239-1518</orcidid><orcidid>https://orcid.org/0000-0001-5027-8316</orcidid></search><sort><creationdate>20231201</creationdate><title>A Novel Model for Dynamic Manufacturing Service Collaboration on Industrial Internet</title><author>Wang, Lei ; Luo, Zhengda ; Tang, Hongtao ; Guo, Shunsheng ; Li, Xixing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-600982c5e4e2783941136cf132d13fe877129065ce3cccec03bd04c8961fbd333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>artificial bee colony algorithm</topic><topic>Collaboration</topic><topic>collaboration optimization</topic><topic>Completion time</topic><topic>Cooperation</topic><topic>Dynamic stability</topic><topic>Industrial Internet platform</topic><topic>Internet</topic><topic>Logistics</topic><topic>Manufacturing</topic><topic>manufacturing service collaboration chain (MSCC)</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Perturbation</topic><topic>R-DMSCO model</topic><topic>Reliability</topic><topic>Swarm intelligence</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Luo, Zhengda</creatorcontrib><creatorcontrib>Tang, Hongtao</creatorcontrib><creatorcontrib>Guo, Shunsheng</creatorcontrib><creatorcontrib>Li, Xixing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Lei</au><au>Luo, Zhengda</au><au>Tang, Hongtao</au><au>Guo, Shunsheng</au><au>Li, Xixing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Model for Dynamic Manufacturing Service Collaboration on Industrial Internet</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>19</volume><issue>12</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Industrial Internet enables distributed manufacturing enterprises to efficiently and promptly respond to the requirements of stakeholders using a manufacturing service collaboration chain (MSCC) composed of networked enterprises. However, various dynamic uncertainties may interrupt the MSCC, such as device malfunctions, urgent order insertions, and dynamic logistics, resulting in inexactitude practical applications. This paper proposes a novel reliability-based dynamic manufacturing service collaboration optimization (R-DMSCO) model for uncertain manufacturing collaboration procedures on Industrial Internet. The RDMSCO model reformulates the MSCC reliability in the form of an expectation-standard deviation of uncertain job completion time described by discrete scenarios pertaining to the uncertain perturbation of processing time and logistics time. Subsequently, an enhanced multi-objective artificial bee colony (EMOABC) algorithm that embeds four improvements is intended to address the manufacturing service collaboration optimization (MSCO) problem. The experimental results demonstrate that EMOABC outperforms other typical multi-objective algorithms for MSCO problems. Additionally, the R-DMSCO model can cope with dynamic uncertainties with better robustness and stability than two other effective strategies for dynamic manufacturing service collaboration.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2023.3252408</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5846-2564</orcidid><orcidid>https://orcid.org/0000-0002-5796-3479</orcidid><orcidid>https://orcid.org/0000-0002-1239-1518</orcidid><orcidid>https://orcid.org/0000-0001-5027-8316</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2023-12, Vol.19 (12), p.1-11
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_10058555
source IEEE Electronic Library (IEL)
subjects Algorithms
artificial bee colony algorithm
Collaboration
collaboration optimization
Completion time
Cooperation
Dynamic stability
Industrial Internet platform
Internet
Logistics
Manufacturing
manufacturing service collaboration chain (MSCC)
Multiple objective analysis
Optimization
Perturbation
R-DMSCO model
Reliability
Swarm intelligence
Uncertainty
title A Novel Model for Dynamic Manufacturing Service Collaboration on Industrial Internet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Model%20for%20Dynamic%20Manufacturing%20Service%20Collaboration%20on%20Industrial%20Internet&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Wang,%20Lei&rft.date=2023-12-01&rft.volume=19&rft.issue=12&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2023.3252408&rft_dat=%3Cproquest_RIE%3E2879382401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879382401&rft_id=info:pmid/&rft_ieee_id=10058555&rfr_iscdi=true