A Genetic Algorithm Optimized Undersampling Method for Seismic Sparse Acquisition and Reconstruction
The irregular observation region poses challenges to seismic acquisition systems design. The commonly-used parallel-type acquisition system requires that the geophones are located at equally spaced positions and therefore is hard to implement in an irregular observation region. An acquisition system...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Huang, Weilin |
description | The irregular observation region poses challenges to seismic acquisition systems design. The commonly-used parallel-type acquisition system requires that the geophones are located at equally spaced positions and therefore is hard to implement in an irregular observation region. An acquisition system which allows implementation of sparse and irregular observation (e.g., the node-type geometry) followed by a reconstruction procedure is a solution. It can not only fit in irregular observation regions but also make a significant reduction in seismic acquisition costs. The seismic sparse acquisition can be mathematically modeled as a undersampling operator in the seismic reconstruction problem. A suboptimal undersampling pattern will lead to an inferior reconstruction result. To optimize the seismic sparse acquisition, I propose a undersampling method based on bionic intelligence in this study. In the proposed method, a Shannon entropy maximum model is proposed to improve the observed ergodicity and reduce the undersampling artifacts. To solve the maximum problem, an improved version of genetic algorithm is presented. The proposed method is applicable to irregular observation regions and can optimize the subsequent reconstruction performance. I provide the detailed algorithm framework and discuss the undersampling artifacts of different undersampling methods. The application to synthetic and field seismic data validates the effectiveness of the proposed method. |
doi_str_mv | 10.1109/TGRS.2023.3252277 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10058532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10058532</ieee_id><sourcerecordid>2786975798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-ddd4f6180a3e4fb237330b418aa51800d6e9ec4f07d85ed0ffc9184a8ce04cf23</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKs_QHARcD01z5nMcihahUqhj_WQJjdtSufRZLrQX-8M7cLVhcP5zoUPoWdKJpSS_G09W64mjDA-4UwylmU3aESlVAlJhbhFI0LzNGEqZ_foIcYDIVRImo2QLfAMaui8wcVx1wTf7Su8aDtf-V-weFNbCFFX7dHXO_wN3b6x2DUBr8DHqodWrQ4RcGFOZx9955sa69riJZimjl04myF6RHdOHyM8Xe8YbT7e19PPZL6YfU2LeWIYybvEWitcShXRHITbMp5xTraCKq1lnxKbQg5GOJJZJcES50xOldDKABHGMT5Gr5fdNjSnM8SuPDTnUPcvS5apNM9klqu-RS8tE5oYA7iyDb7S4aekpBxkloPMcpBZXmX2zMuF8QDwr0-kkpzxP2EGch4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786975798</pqid></control><display><type>article</type><title>A Genetic Algorithm Optimized Undersampling Method for Seismic Sparse Acquisition and Reconstruction</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Weilin</creator><creatorcontrib>Huang, Weilin</creatorcontrib><description>The irregular observation region poses challenges to seismic acquisition systems design. The commonly-used parallel-type acquisition system requires that the geophones are located at equally spaced positions and therefore is hard to implement in an irregular observation region. An acquisition system which allows implementation of sparse and irregular observation (e.g., the node-type geometry) followed by a reconstruction procedure is a solution. It can not only fit in irregular observation regions but also make a significant reduction in seismic acquisition costs. The seismic sparse acquisition can be mathematically modeled as a undersampling operator in the seismic reconstruction problem. A suboptimal undersampling pattern will lead to an inferior reconstruction result. To optimize the seismic sparse acquisition, I propose a undersampling method based on bionic intelligence in this study. In the proposed method, a Shannon entropy maximum model is proposed to improve the observed ergodicity and reduce the undersampling artifacts. To solve the maximum problem, an improved version of genetic algorithm is presented. The proposed method is applicable to irregular observation regions and can optimize the subsequent reconstruction performance. I provide the detailed algorithm framework and discuss the undersampling artifacts of different undersampling methods. The application to synthetic and field seismic data validates the effectiveness of the proposed method.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3252277</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bionics ; Channel coding ; Compressed Sensing ; Entropy ; Entropy (Information theory) ; Genetic Algorithm ; Genetic algorithms ; Geometry ; Image reconstruction ; Mathematical models ; Mathematics ; Methods ; Reconstruction ; Seismic data ; Seismic reconstruction ; Seismic Sparse Acquisition ; Seismometers ; Sparse matrices ; Systems design ; Undersampling</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c209t-ddd4f6180a3e4fb237330b418aa51800d6e9ec4f07d85ed0ffc9184a8ce04cf23</cites><orcidid>0000-0003-1692-4868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10058532$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10058532$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Weilin</creatorcontrib><title>A Genetic Algorithm Optimized Undersampling Method for Seismic Sparse Acquisition and Reconstruction</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The irregular observation region poses challenges to seismic acquisition systems design. The commonly-used parallel-type acquisition system requires that the geophones are located at equally spaced positions and therefore is hard to implement in an irregular observation region. An acquisition system which allows implementation of sparse and irregular observation (e.g., the node-type geometry) followed by a reconstruction procedure is a solution. It can not only fit in irregular observation regions but also make a significant reduction in seismic acquisition costs. The seismic sparse acquisition can be mathematically modeled as a undersampling operator in the seismic reconstruction problem. A suboptimal undersampling pattern will lead to an inferior reconstruction result. To optimize the seismic sparse acquisition, I propose a undersampling method based on bionic intelligence in this study. In the proposed method, a Shannon entropy maximum model is proposed to improve the observed ergodicity and reduce the undersampling artifacts. To solve the maximum problem, an improved version of genetic algorithm is presented. The proposed method is applicable to irregular observation regions and can optimize the subsequent reconstruction performance. I provide the detailed algorithm framework and discuss the undersampling artifacts of different undersampling methods. The application to synthetic and field seismic data validates the effectiveness of the proposed method.</description><subject>Algorithms</subject><subject>Bionics</subject><subject>Channel coding</subject><subject>Compressed Sensing</subject><subject>Entropy</subject><subject>Entropy (Information theory)</subject><subject>Genetic Algorithm</subject><subject>Genetic algorithms</subject><subject>Geometry</subject><subject>Image reconstruction</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Reconstruction</subject><subject>Seismic data</subject><subject>Seismic reconstruction</subject><subject>Seismic Sparse Acquisition</subject><subject>Seismometers</subject><subject>Sparse matrices</subject><subject>Systems design</subject><subject>Undersampling</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWKs_QHARcD01z5nMcihahUqhj_WQJjdtSufRZLrQX-8M7cLVhcP5zoUPoWdKJpSS_G09W64mjDA-4UwylmU3aESlVAlJhbhFI0LzNGEqZ_foIcYDIVRImo2QLfAMaui8wcVx1wTf7Su8aDtf-V-weFNbCFFX7dHXO_wN3b6x2DUBr8DHqodWrQ4RcGFOZx9955sa69riJZimjl04myF6RHdOHyM8Xe8YbT7e19PPZL6YfU2LeWIYybvEWitcShXRHITbMp5xTraCKq1lnxKbQg5GOJJZJcES50xOldDKABHGMT5Gr5fdNjSnM8SuPDTnUPcvS5apNM9klqu-RS8tE5oYA7iyDb7S4aekpBxkloPMcpBZXmX2zMuF8QDwr0-kkpzxP2EGch4</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Huang, Weilin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1692-4868</orcidid></search><sort><creationdate>20230101</creationdate><title>A Genetic Algorithm Optimized Undersampling Method for Seismic Sparse Acquisition and Reconstruction</title><author>Huang, Weilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-ddd4f6180a3e4fb237330b418aa51800d6e9ec4f07d85ed0ffc9184a8ce04cf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bionics</topic><topic>Channel coding</topic><topic>Compressed Sensing</topic><topic>Entropy</topic><topic>Entropy (Information theory)</topic><topic>Genetic Algorithm</topic><topic>Genetic algorithms</topic><topic>Geometry</topic><topic>Image reconstruction</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Reconstruction</topic><topic>Seismic data</topic><topic>Seismic reconstruction</topic><topic>Seismic Sparse Acquisition</topic><topic>Seismometers</topic><topic>Sparse matrices</topic><topic>Systems design</topic><topic>Undersampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Weilin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Weilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Genetic Algorithm Optimized Undersampling Method for Seismic Sparse Acquisition and Reconstruction</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The irregular observation region poses challenges to seismic acquisition systems design. The commonly-used parallel-type acquisition system requires that the geophones are located at equally spaced positions and therefore is hard to implement in an irregular observation region. An acquisition system which allows implementation of sparse and irregular observation (e.g., the node-type geometry) followed by a reconstruction procedure is a solution. It can not only fit in irregular observation regions but also make a significant reduction in seismic acquisition costs. The seismic sparse acquisition can be mathematically modeled as a undersampling operator in the seismic reconstruction problem. A suboptimal undersampling pattern will lead to an inferior reconstruction result. To optimize the seismic sparse acquisition, I propose a undersampling method based on bionic intelligence in this study. In the proposed method, a Shannon entropy maximum model is proposed to improve the observed ergodicity and reduce the undersampling artifacts. To solve the maximum problem, an improved version of genetic algorithm is presented. The proposed method is applicable to irregular observation regions and can optimize the subsequent reconstruction performance. I provide the detailed algorithm framework and discuss the undersampling artifacts of different undersampling methods. The application to synthetic and field seismic data validates the effectiveness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3252277</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1692-4868</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10058532 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bionics Channel coding Compressed Sensing Entropy Entropy (Information theory) Genetic Algorithm Genetic algorithms Geometry Image reconstruction Mathematical models Mathematics Methods Reconstruction Seismic data Seismic reconstruction Seismic Sparse Acquisition Seismometers Sparse matrices Systems design Undersampling |
title | A Genetic Algorithm Optimized Undersampling Method for Seismic Sparse Acquisition and Reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Genetic%20Algorithm%20Optimized%20Undersampling%20Method%20for%20Seismic%20Sparse%20Acquisition%20and%20Reconstruction&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Huang,%20Weilin&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3252277&rft_dat=%3Cproquest_RIE%3E2786975798%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786975798&rft_id=info:pmid/&rft_ieee_id=10058532&rfr_iscdi=true |