Communication-Less Receiver-Side Resonant Frequency Tuning for Magnetically Coupled Wireless Power Transfer Systems
Compensating for deviations in the resonant frequency is crucial in magnetic resonance coupling wireless power transfer (WPT) systems. Thus, this study proposes a communication-less receiver-side resonant frequency-tuning scheme that compensates for the reactance in the receiver without communicatin...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Matsuura, Kentaro Kobuchi, Daisuke Narusue, Yoshiaki Morikawa, Hiroyuki |
description | Compensating for deviations in the resonant frequency is crucial in magnetic resonance coupling wireless power transfer (WPT) systems. Thus, this study proposes a communication-less receiver-side resonant frequency-tuning scheme that compensates for the reactance in the receiver without communicating with the transmitter. The proposed scheme comprises an inductor-capacitor-capacitor compensation topology at the transmitter and a half-bridge circuit at the receiver, whose operating phase is set to be orthogonal to the receiver current. Resonant frequency tuning can be achieved by adjusting the DC voltage applied to the half-bridge circuit to maximize the power received at the load. The reactance compensation ability of the proposed scheme is analyzed through experiments on a 200 kHz WPT system. When the secondary capacitance deviated from -20% to +20%, the efficiency degradation was maintained within 6.7% with the proposed scheme, whereas the efficiency degraded by up to 33.3% without compensation. |
doi_str_mv | 10.1109/ACCESS.2023.3251987 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10058205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10058205</ieee_id><doaj_id>oai_doaj_org_article_db4c714380dc412f9f2be26b92bcd623</doaj_id><sourcerecordid>2786975371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-d70c6e1cf0b65db430618bfd647d15f2e135d8cf5ba3e8cfa570ab2fc4e290b73</originalsourceid><addsrcrecordid>eNpNkU1rGzEQhpfQQkLiX9AeFnpeRx8rafdolqQxOLTUDjkKfYzMmrXkSusG__vIWVMylxkN87wa5i2KbxjNMUbt_aLrHtbrOUGEzilhuG3EVXFDMG8ryij_8qm-LmYp7VCOJreYuClSF_b7o--NGvvgqxWkVP4BA_0_iNW6t5BfKXjlx_Ixwt8jeHMqNxnw29KFWD6rrYcx48NwKrtwPAxgy9c-wnBW-h3eIJabqHxyuVif0gj7dFd8dWpIMLvk2-Ll8WHTPVWrXz-X3WJVmRq1Y2UFMhywcUhzZnVNEceNdpbXwmLmCGDKbGMc04pCzooJpDRxpgbSIi3obbGcdG1QO3mI_V7Fkwyqlx-NELdSxbz7ADLLG4Fr2iBrakxc64gGwnVLtLGc0Kz1Y9I6xJCvkEa5C8fo8_qSiIa3glGB8xSdpkwMKUVw_3_FSJ7NkpNZ8myWvJiVqe8T1QPAJwKxhiBG3wHoP5K9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786975371</pqid></control><display><type>article</type><title>Communication-Less Receiver-Side Resonant Frequency Tuning for Magnetically Coupled Wireless Power Transfer Systems</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Matsuura, Kentaro ; Kobuchi, Daisuke ; Narusue, Yoshiaki ; Morikawa, Hiroyuki</creator><creatorcontrib>Matsuura, Kentaro ; Kobuchi, Daisuke ; Narusue, Yoshiaki ; Morikawa, Hiroyuki</creatorcontrib><description>Compensating for deviations in the resonant frequency is crucial in magnetic resonance coupling wireless power transfer (WPT) systems. Thus, this study proposes a communication-less receiver-side resonant frequency-tuning scheme that compensates for the reactance in the receiver without communicating with the transmitter. The proposed scheme comprises an inductor-capacitor-capacitor compensation topology at the transmitter and a half-bridge circuit at the receiver, whose operating phase is set to be orthogonal to the receiver current. Resonant frequency tuning can be achieved by adjusting the DC voltage applied to the half-bridge circuit to maximize the power received at the load. The reactance compensation ability of the proposed scheme is analyzed through experiments on a 200 kHz WPT system. When the secondary capacitance deviated from -20% to +20%, the efficiency degradation was maintained within 6.7% with the proposed scheme, whereas the efficiency degraded by up to 33.3% without compensation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3251987</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Capacitors ; Circuits ; Communication ; Compensation ; Field effect transistors ; Inductors ; Logic gates ; Magnetic resonance ; Reactance ; reactance compensation ; Receivers ; Resonant frequencies ; resonant frequency ; Topology ; Transmitters ; Tuning ; variable reactor ; Voltage ; wireless power transfer ; Wireless power transmission</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-d70c6e1cf0b65db430618bfd647d15f2e135d8cf5ba3e8cfa570ab2fc4e290b73</citedby><cites>FETCH-LOGICAL-c409t-d70c6e1cf0b65db430618bfd647d15f2e135d8cf5ba3e8cfa570ab2fc4e290b73</cites><orcidid>0000-0001-7957-0839 ; 0000-0001-5906-6109 ; 0000-0002-2516-0065 ; 0000-0001-8628-3109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10058205$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Matsuura, Kentaro</creatorcontrib><creatorcontrib>Kobuchi, Daisuke</creatorcontrib><creatorcontrib>Narusue, Yoshiaki</creatorcontrib><creatorcontrib>Morikawa, Hiroyuki</creatorcontrib><title>Communication-Less Receiver-Side Resonant Frequency Tuning for Magnetically Coupled Wireless Power Transfer Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>Compensating for deviations in the resonant frequency is crucial in magnetic resonance coupling wireless power transfer (WPT) systems. Thus, this study proposes a communication-less receiver-side resonant frequency-tuning scheme that compensates for the reactance in the receiver without communicating with the transmitter. The proposed scheme comprises an inductor-capacitor-capacitor compensation topology at the transmitter and a half-bridge circuit at the receiver, whose operating phase is set to be orthogonal to the receiver current. Resonant frequency tuning can be achieved by adjusting the DC voltage applied to the half-bridge circuit to maximize the power received at the load. The reactance compensation ability of the proposed scheme is analyzed through experiments on a 200 kHz WPT system. When the secondary capacitance deviated from -20% to +20%, the efficiency degradation was maintained within 6.7% with the proposed scheme, whereas the efficiency degraded by up to 33.3% without compensation.</description><subject>Capacitors</subject><subject>Circuits</subject><subject>Communication</subject><subject>Compensation</subject><subject>Field effect transistors</subject><subject>Inductors</subject><subject>Logic gates</subject><subject>Magnetic resonance</subject><subject>Reactance</subject><subject>reactance compensation</subject><subject>Receivers</subject><subject>Resonant frequencies</subject><subject>resonant frequency</subject><subject>Topology</subject><subject>Transmitters</subject><subject>Tuning</subject><subject>variable reactor</subject><subject>Voltage</subject><subject>wireless power transfer</subject><subject>Wireless power transmission</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1rGzEQhpfQQkLiX9AeFnpeRx8rafdolqQxOLTUDjkKfYzMmrXkSusG__vIWVMylxkN87wa5i2KbxjNMUbt_aLrHtbrOUGEzilhuG3EVXFDMG8ryij_8qm-LmYp7VCOJreYuClSF_b7o--NGvvgqxWkVP4BA_0_iNW6t5BfKXjlx_Ixwt8jeHMqNxnw29KFWD6rrYcx48NwKrtwPAxgy9c-wnBW-h3eIJabqHxyuVif0gj7dFd8dWpIMLvk2-Ll8WHTPVWrXz-X3WJVmRq1Y2UFMhywcUhzZnVNEceNdpbXwmLmCGDKbGMc04pCzooJpDRxpgbSIi3obbGcdG1QO3mI_V7Fkwyqlx-NELdSxbz7ADLLG4Fr2iBrakxc64gGwnVLtLGc0Kz1Y9I6xJCvkEa5C8fo8_qSiIa3glGB8xSdpkwMKUVw_3_FSJ7NkpNZ8myWvJiVqe8T1QPAJwKxhiBG3wHoP5K9</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Matsuura, Kentaro</creator><creator>Kobuchi, Daisuke</creator><creator>Narusue, Yoshiaki</creator><creator>Morikawa, Hiroyuki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7957-0839</orcidid><orcidid>https://orcid.org/0000-0001-5906-6109</orcidid><orcidid>https://orcid.org/0000-0002-2516-0065</orcidid><orcidid>https://orcid.org/0000-0001-8628-3109</orcidid></search><sort><creationdate>20230101</creationdate><title>Communication-Less Receiver-Side Resonant Frequency Tuning for Magnetically Coupled Wireless Power Transfer Systems</title><author>Matsuura, Kentaro ; Kobuchi, Daisuke ; Narusue, Yoshiaki ; Morikawa, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-d70c6e1cf0b65db430618bfd647d15f2e135d8cf5ba3e8cfa570ab2fc4e290b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Capacitors</topic><topic>Circuits</topic><topic>Communication</topic><topic>Compensation</topic><topic>Field effect transistors</topic><topic>Inductors</topic><topic>Logic gates</topic><topic>Magnetic resonance</topic><topic>Reactance</topic><topic>reactance compensation</topic><topic>Receivers</topic><topic>Resonant frequencies</topic><topic>resonant frequency</topic><topic>Topology</topic><topic>Transmitters</topic><topic>Tuning</topic><topic>variable reactor</topic><topic>Voltage</topic><topic>wireless power transfer</topic><topic>Wireless power transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsuura, Kentaro</creatorcontrib><creatorcontrib>Kobuchi, Daisuke</creatorcontrib><creatorcontrib>Narusue, Yoshiaki</creatorcontrib><creatorcontrib>Morikawa, Hiroyuki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsuura, Kentaro</au><au>Kobuchi, Daisuke</au><au>Narusue, Yoshiaki</au><au>Morikawa, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Communication-Less Receiver-Side Resonant Frequency Tuning for Magnetically Coupled Wireless Power Transfer Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Compensating for deviations in the resonant frequency is crucial in magnetic resonance coupling wireless power transfer (WPT) systems. Thus, this study proposes a communication-less receiver-side resonant frequency-tuning scheme that compensates for the reactance in the receiver without communicating with the transmitter. The proposed scheme comprises an inductor-capacitor-capacitor compensation topology at the transmitter and a half-bridge circuit at the receiver, whose operating phase is set to be orthogonal to the receiver current. Resonant frequency tuning can be achieved by adjusting the DC voltage applied to the half-bridge circuit to maximize the power received at the load. The reactance compensation ability of the proposed scheme is analyzed through experiments on a 200 kHz WPT system. When the secondary capacitance deviated from -20% to +20%, the efficiency degradation was maintained within 6.7% with the proposed scheme, whereas the efficiency degraded by up to 33.3% without compensation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3251987</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7957-0839</orcidid><orcidid>https://orcid.org/0000-0001-5906-6109</orcidid><orcidid>https://orcid.org/0000-0002-2516-0065</orcidid><orcidid>https://orcid.org/0000-0001-8628-3109</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10058205 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Capacitors Circuits Communication Compensation Field effect transistors Inductors Logic gates Magnetic resonance Reactance reactance compensation Receivers Resonant frequencies resonant frequency Topology Transmitters Tuning variable reactor Voltage wireless power transfer Wireless power transmission |
title | Communication-Less Receiver-Side Resonant Frequency Tuning for Magnetically Coupled Wireless Power Transfer Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Communication-Less%20Receiver-Side%20Resonant%20Frequency%20Tuning%20for%20Magnetically%20Coupled%20Wireless%20Power%20Transfer%20Systems&rft.jtitle=IEEE%20access&rft.au=Matsuura,%20Kentaro&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3251987&rft_dat=%3Cproquest_ieee_%3E2786975371%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786975371&rft_id=info:pmid/&rft_ieee_id=10058205&rft_doaj_id=oai_doaj_org_article_db4c714380dc412f9f2be26b92bcd623&rfr_iscdi=true |