Communication-Less Receiver-Side Resonant Frequency Tuning for Magnetically Coupled Wireless Power Transfer Systems

Compensating for deviations in the resonant frequency is crucial in magnetic resonance coupling wireless power transfer (WPT) systems. Thus, this study proposes a communication-less receiver-side resonant frequency-tuning scheme that compensates for the reactance in the receiver without communicatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Matsuura, Kentaro, Kobuchi, Daisuke, Narusue, Yoshiaki, Morikawa, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Matsuura, Kentaro
Kobuchi, Daisuke
Narusue, Yoshiaki
Morikawa, Hiroyuki
description Compensating for deviations in the resonant frequency is crucial in magnetic resonance coupling wireless power transfer (WPT) systems. Thus, this study proposes a communication-less receiver-side resonant frequency-tuning scheme that compensates for the reactance in the receiver without communicating with the transmitter. The proposed scheme comprises an inductor-capacitor-capacitor compensation topology at the transmitter and a half-bridge circuit at the receiver, whose operating phase is set to be orthogonal to the receiver current. Resonant frequency tuning can be achieved by adjusting the DC voltage applied to the half-bridge circuit to maximize the power received at the load. The reactance compensation ability of the proposed scheme is analyzed through experiments on a 200 kHz WPT system. When the secondary capacitance deviated from -20% to +20%, the efficiency degradation was maintained within 6.7% with the proposed scheme, whereas the efficiency degraded by up to 33.3% without compensation.
doi_str_mv 10.1109/ACCESS.2023.3251987
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10058205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10058205</ieee_id><doaj_id>oai_doaj_org_article_db4c714380dc412f9f2be26b92bcd623</doaj_id><sourcerecordid>2786975371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-d70c6e1cf0b65db430618bfd647d15f2e135d8cf5ba3e8cfa570ab2fc4e290b73</originalsourceid><addsrcrecordid>eNpNkU1rGzEQhpfQQkLiX9AeFnpeRx8rafdolqQxOLTUDjkKfYzMmrXkSusG__vIWVMylxkN87wa5i2KbxjNMUbt_aLrHtbrOUGEzilhuG3EVXFDMG8ryij_8qm-LmYp7VCOJreYuClSF_b7o--NGvvgqxWkVP4BA_0_iNW6t5BfKXjlx_Ixwt8jeHMqNxnw29KFWD6rrYcx48NwKrtwPAxgy9c-wnBW-h3eIJabqHxyuVif0gj7dFd8dWpIMLvk2-Ll8WHTPVWrXz-X3WJVmRq1Y2UFMhywcUhzZnVNEceNdpbXwmLmCGDKbGMc04pCzooJpDRxpgbSIi3obbGcdG1QO3mI_V7Fkwyqlx-NELdSxbz7ADLLG4Fr2iBrakxc64gGwnVLtLGc0Kz1Y9I6xJCvkEa5C8fo8_qSiIa3glGB8xSdpkwMKUVw_3_FSJ7NkpNZ8myWvJiVqe8T1QPAJwKxhiBG3wHoP5K9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786975371</pqid></control><display><type>article</type><title>Communication-Less Receiver-Side Resonant Frequency Tuning for Magnetically Coupled Wireless Power Transfer Systems</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Matsuura, Kentaro ; Kobuchi, Daisuke ; Narusue, Yoshiaki ; Morikawa, Hiroyuki</creator><creatorcontrib>Matsuura, Kentaro ; Kobuchi, Daisuke ; Narusue, Yoshiaki ; Morikawa, Hiroyuki</creatorcontrib><description>Compensating for deviations in the resonant frequency is crucial in magnetic resonance coupling wireless power transfer (WPT) systems. Thus, this study proposes a communication-less receiver-side resonant frequency-tuning scheme that compensates for the reactance in the receiver without communicating with the transmitter. The proposed scheme comprises an inductor-capacitor-capacitor compensation topology at the transmitter and a half-bridge circuit at the receiver, whose operating phase is set to be orthogonal to the receiver current. Resonant frequency tuning can be achieved by adjusting the DC voltage applied to the half-bridge circuit to maximize the power received at the load. The reactance compensation ability of the proposed scheme is analyzed through experiments on a 200 kHz WPT system. When the secondary capacitance deviated from -20% to +20%, the efficiency degradation was maintained within 6.7% with the proposed scheme, whereas the efficiency degraded by up to 33.3% without compensation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3251987</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Capacitors ; Circuits ; Communication ; Compensation ; Field effect transistors ; Inductors ; Logic gates ; Magnetic resonance ; Reactance ; reactance compensation ; Receivers ; Resonant frequencies ; resonant frequency ; Topology ; Transmitters ; Tuning ; variable reactor ; Voltage ; wireless power transfer ; Wireless power transmission</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-d70c6e1cf0b65db430618bfd647d15f2e135d8cf5ba3e8cfa570ab2fc4e290b73</citedby><cites>FETCH-LOGICAL-c409t-d70c6e1cf0b65db430618bfd647d15f2e135d8cf5ba3e8cfa570ab2fc4e290b73</cites><orcidid>0000-0001-7957-0839 ; 0000-0001-5906-6109 ; 0000-0002-2516-0065 ; 0000-0001-8628-3109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10058205$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Matsuura, Kentaro</creatorcontrib><creatorcontrib>Kobuchi, Daisuke</creatorcontrib><creatorcontrib>Narusue, Yoshiaki</creatorcontrib><creatorcontrib>Morikawa, Hiroyuki</creatorcontrib><title>Communication-Less Receiver-Side Resonant Frequency Tuning for Magnetically Coupled Wireless Power Transfer Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>Compensating for deviations in the resonant frequency is crucial in magnetic resonance coupling wireless power transfer (WPT) systems. Thus, this study proposes a communication-less receiver-side resonant frequency-tuning scheme that compensates for the reactance in the receiver without communicating with the transmitter. The proposed scheme comprises an inductor-capacitor-capacitor compensation topology at the transmitter and a half-bridge circuit at the receiver, whose operating phase is set to be orthogonal to the receiver current. Resonant frequency tuning can be achieved by adjusting the DC voltage applied to the half-bridge circuit to maximize the power received at the load. The reactance compensation ability of the proposed scheme is analyzed through experiments on a 200 kHz WPT system. When the secondary capacitance deviated from -20% to +20%, the efficiency degradation was maintained within 6.7% with the proposed scheme, whereas the efficiency degraded by up to 33.3% without compensation.</description><subject>Capacitors</subject><subject>Circuits</subject><subject>Communication</subject><subject>Compensation</subject><subject>Field effect transistors</subject><subject>Inductors</subject><subject>Logic gates</subject><subject>Magnetic resonance</subject><subject>Reactance</subject><subject>reactance compensation</subject><subject>Receivers</subject><subject>Resonant frequencies</subject><subject>resonant frequency</subject><subject>Topology</subject><subject>Transmitters</subject><subject>Tuning</subject><subject>variable reactor</subject><subject>Voltage</subject><subject>wireless power transfer</subject><subject>Wireless power transmission</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1rGzEQhpfQQkLiX9AeFnpeRx8rafdolqQxOLTUDjkKfYzMmrXkSusG__vIWVMylxkN87wa5i2KbxjNMUbt_aLrHtbrOUGEzilhuG3EVXFDMG8ryij_8qm-LmYp7VCOJreYuClSF_b7o--NGvvgqxWkVP4BA_0_iNW6t5BfKXjlx_Ixwt8jeHMqNxnw29KFWD6rrYcx48NwKrtwPAxgy9c-wnBW-h3eIJabqHxyuVif0gj7dFd8dWpIMLvk2-Ll8WHTPVWrXz-X3WJVmRq1Y2UFMhywcUhzZnVNEceNdpbXwmLmCGDKbGMc04pCzooJpDRxpgbSIi3obbGcdG1QO3mI_V7Fkwyqlx-NELdSxbz7ADLLG4Fr2iBrakxc64gGwnVLtLGc0Kz1Y9I6xJCvkEa5C8fo8_qSiIa3glGB8xSdpkwMKUVw_3_FSJ7NkpNZ8myWvJiVqe8T1QPAJwKxhiBG3wHoP5K9</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Matsuura, Kentaro</creator><creator>Kobuchi, Daisuke</creator><creator>Narusue, Yoshiaki</creator><creator>Morikawa, Hiroyuki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7957-0839</orcidid><orcidid>https://orcid.org/0000-0001-5906-6109</orcidid><orcidid>https://orcid.org/0000-0002-2516-0065</orcidid><orcidid>https://orcid.org/0000-0001-8628-3109</orcidid></search><sort><creationdate>20230101</creationdate><title>Communication-Less Receiver-Side Resonant Frequency Tuning for Magnetically Coupled Wireless Power Transfer Systems</title><author>Matsuura, Kentaro ; Kobuchi, Daisuke ; Narusue, Yoshiaki ; Morikawa, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-d70c6e1cf0b65db430618bfd647d15f2e135d8cf5ba3e8cfa570ab2fc4e290b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Capacitors</topic><topic>Circuits</topic><topic>Communication</topic><topic>Compensation</topic><topic>Field effect transistors</topic><topic>Inductors</topic><topic>Logic gates</topic><topic>Magnetic resonance</topic><topic>Reactance</topic><topic>reactance compensation</topic><topic>Receivers</topic><topic>Resonant frequencies</topic><topic>resonant frequency</topic><topic>Topology</topic><topic>Transmitters</topic><topic>Tuning</topic><topic>variable reactor</topic><topic>Voltage</topic><topic>wireless power transfer</topic><topic>Wireless power transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsuura, Kentaro</creatorcontrib><creatorcontrib>Kobuchi, Daisuke</creatorcontrib><creatorcontrib>Narusue, Yoshiaki</creatorcontrib><creatorcontrib>Morikawa, Hiroyuki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsuura, Kentaro</au><au>Kobuchi, Daisuke</au><au>Narusue, Yoshiaki</au><au>Morikawa, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Communication-Less Receiver-Side Resonant Frequency Tuning for Magnetically Coupled Wireless Power Transfer Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Compensating for deviations in the resonant frequency is crucial in magnetic resonance coupling wireless power transfer (WPT) systems. Thus, this study proposes a communication-less receiver-side resonant frequency-tuning scheme that compensates for the reactance in the receiver without communicating with the transmitter. The proposed scheme comprises an inductor-capacitor-capacitor compensation topology at the transmitter and a half-bridge circuit at the receiver, whose operating phase is set to be orthogonal to the receiver current. Resonant frequency tuning can be achieved by adjusting the DC voltage applied to the half-bridge circuit to maximize the power received at the load. The reactance compensation ability of the proposed scheme is analyzed through experiments on a 200 kHz WPT system. When the secondary capacitance deviated from -20% to +20%, the efficiency degradation was maintained within 6.7% with the proposed scheme, whereas the efficiency degraded by up to 33.3% without compensation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3251987</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7957-0839</orcidid><orcidid>https://orcid.org/0000-0001-5906-6109</orcidid><orcidid>https://orcid.org/0000-0002-2516-0065</orcidid><orcidid>https://orcid.org/0000-0001-8628-3109</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10058205
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Capacitors
Circuits
Communication
Compensation
Field effect transistors
Inductors
Logic gates
Magnetic resonance
Reactance
reactance compensation
Receivers
Resonant frequencies
resonant frequency
Topology
Transmitters
Tuning
variable reactor
Voltage
wireless power transfer
Wireless power transmission
title Communication-Less Receiver-Side Resonant Frequency Tuning for Magnetically Coupled Wireless Power Transfer Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Communication-Less%20Receiver-Side%20Resonant%20Frequency%20Tuning%20for%20Magnetically%20Coupled%20Wireless%20Power%20Transfer%20Systems&rft.jtitle=IEEE%20access&rft.au=Matsuura,%20Kentaro&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3251987&rft_dat=%3Cproquest_ieee_%3E2786975371%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786975371&rft_id=info:pmid/&rft_ieee_id=10058205&rft_doaj_id=oai_doaj_org_article_db4c714380dc412f9f2be26b92bcd623&rfr_iscdi=true