Spatio-Temporal Relationship Cognitive Learning for Multi-Robot Air Combat

Relationship cognition is crucial to learning-based Multi-Robot Systems (MRSs). As an advanced application of MRSs for fierce confrontation, the relationships among autonomous air combat robots inherently present complex time-varying characteristics, which makes relationship cognition even more diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cognitive and developmental systems 2023-02, p.1-1
Hauptverfasser: Piao, Haiyin, Han, Yue, He, Shaoming, Yu, Chao, Fan, Songyuan, Hou, Yaqing, Bai, Chengchao, Mo, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on cognitive and developmental systems
container_volume
creator Piao, Haiyin
Han, Yue
He, Shaoming
Yu, Chao
Fan, Songyuan
Hou, Yaqing
Bai, Chengchao
Mo, Li
description Relationship cognition is crucial to learning-based Multi-Robot Systems (MRSs). As an advanced application of MRSs for fierce confrontation, the relationships among autonomous air combat robots inherently present complex time-varying characteristics, which makes relationship cognition even more difficult. However, previous studies have only focused on spatial cooperative relationships, thus ignoring the potential impact of the temporal dynamics of relationships on long-term cooperative behaviors. To tackle this drawback, we propose a novel Multi-Agent Deep Reinforcement Learning (MADRL) based autonomous air combat robots collaboration algorithm, called Spatio-Temporal Aerial robots Relationship Co-Optimization (STARCO). STARCO formulates the complex dynamic relationship cognition problem into a spatio-temporal deep Graph Neural Network (GNN) learning problem. On this basis, we overcome the limitations of previous methods, by accurately capturing the key spatio-temporal patterns from aggressive air combat, and enable global collaborative decision-making through joint strategy optimization. An empirical study shows that STARCO outperforms several state-of-the-art MARL baselines by 24.6% in learning performance. We also demonstrate that STARCO is capable of evolving various cooperative strategies comparable to human expert knowledge.
doi_str_mv 10.1109/TCDS.2023.3250819
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10057068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10057068</ieee_id><sourcerecordid>10057068</sourcerecordid><originalsourceid>FETCH-ieee_primary_100570683</originalsourceid><addsrcrecordid>eNqFir0KwjAYADMoKNoHEBzyAq1fEvs3SlVEdGm7lxTS-knbhDQKvr0K7k4Hd0fIikHAGKSbMtsXAQcuAsFDSFg6IXMu4tRPUg4z4o3jHQBYJOJkG8_JuTDSofZL1RttZUdz1X3FMN7Q0Ey3Azp8KnpR0g44tLTRll4fnUM_17V2dIf2s_W1dEsybWQ3Ku_HBVkfD2V28lEpVRmLvbSvigGEMUSJ-JPfkoU8hQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatio-Temporal Relationship Cognitive Learning for Multi-Robot Air Combat</title><source>IEEE Electronic Library (IEL)</source><creator>Piao, Haiyin ; Han, Yue ; He, Shaoming ; Yu, Chao ; Fan, Songyuan ; Hou, Yaqing ; Bai, Chengchao ; Mo, Li</creator><creatorcontrib>Piao, Haiyin ; Han, Yue ; He, Shaoming ; Yu, Chao ; Fan, Songyuan ; Hou, Yaqing ; Bai, Chengchao ; Mo, Li</creatorcontrib><description>Relationship cognition is crucial to learning-based Multi-Robot Systems (MRSs). As an advanced application of MRSs for fierce confrontation, the relationships among autonomous air combat robots inherently present complex time-varying characteristics, which makes relationship cognition even more difficult. However, previous studies have only focused on spatial cooperative relationships, thus ignoring the potential impact of the temporal dynamics of relationships on long-term cooperative behaviors. To tackle this drawback, we propose a novel Multi-Agent Deep Reinforcement Learning (MADRL) based autonomous air combat robots collaboration algorithm, called Spatio-Temporal Aerial robots Relationship Co-Optimization (STARCO). STARCO formulates the complex dynamic relationship cognition problem into a spatio-temporal deep Graph Neural Network (GNN) learning problem. On this basis, we overcome the limitations of previous methods, by accurately capturing the key spatio-temporal patterns from aggressive air combat, and enable global collaborative decision-making through joint strategy optimization. An empirical study shows that STARCO outperforms several state-of-the-art MARL baselines by 24.6% in learning performance. We also demonstrate that STARCO is capable of evolving various cooperative strategies comparable to human expert knowledge.</description><identifier>ISSN: 2379-8920</identifier><identifier>DOI: 10.1109/TCDS.2023.3250819</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>IEEE</publisher><subject>air combat ; Autonomous aerial vehicles ; Cognition ; Feature extraction ; Graph Neural Network (GNN) ; Graph neural networks ; Multi-Agent Deep Reinforcement Learning (MADRL) ; relationship ; robot ; Robot kinematics ; Robots ; spatio-temporal ; Topology</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2023-02, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6432-5187 ; 0000-0002-9929-2650 ; 0000-0002-0349-9869 ; 0000-0002-4371-3663 ; 0000-0002-8519-4750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10057068$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10057068$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Piao, Haiyin</creatorcontrib><creatorcontrib>Han, Yue</creatorcontrib><creatorcontrib>He, Shaoming</creatorcontrib><creatorcontrib>Yu, Chao</creatorcontrib><creatorcontrib>Fan, Songyuan</creatorcontrib><creatorcontrib>Hou, Yaqing</creatorcontrib><creatorcontrib>Bai, Chengchao</creatorcontrib><creatorcontrib>Mo, Li</creatorcontrib><title>Spatio-Temporal Relationship Cognitive Learning for Multi-Robot Air Combat</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>Relationship cognition is crucial to learning-based Multi-Robot Systems (MRSs). As an advanced application of MRSs for fierce confrontation, the relationships among autonomous air combat robots inherently present complex time-varying characteristics, which makes relationship cognition even more difficult. However, previous studies have only focused on spatial cooperative relationships, thus ignoring the potential impact of the temporal dynamics of relationships on long-term cooperative behaviors. To tackle this drawback, we propose a novel Multi-Agent Deep Reinforcement Learning (MADRL) based autonomous air combat robots collaboration algorithm, called Spatio-Temporal Aerial robots Relationship Co-Optimization (STARCO). STARCO formulates the complex dynamic relationship cognition problem into a spatio-temporal deep Graph Neural Network (GNN) learning problem. On this basis, we overcome the limitations of previous methods, by accurately capturing the key spatio-temporal patterns from aggressive air combat, and enable global collaborative decision-making through joint strategy optimization. An empirical study shows that STARCO outperforms several state-of-the-art MARL baselines by 24.6% in learning performance. We also demonstrate that STARCO is capable of evolving various cooperative strategies comparable to human expert knowledge.</description><subject>air combat</subject><subject>Autonomous aerial vehicles</subject><subject>Cognition</subject><subject>Feature extraction</subject><subject>Graph Neural Network (GNN)</subject><subject>Graph neural networks</subject><subject>Multi-Agent Deep Reinforcement Learning (MADRL)</subject><subject>relationship</subject><subject>robot</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>spatio-temporal</subject><subject>Topology</subject><issn>2379-8920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFir0KwjAYADMoKNoHEBzyAq1fEvs3SlVEdGm7lxTS-knbhDQKvr0K7k4Hd0fIikHAGKSbMtsXAQcuAsFDSFg6IXMu4tRPUg4z4o3jHQBYJOJkG8_JuTDSofZL1RttZUdz1X3FMN7Q0Ey3Azp8KnpR0g44tLTRll4fnUM_17V2dIf2s_W1dEsybWQ3Ku_HBVkfD2V28lEpVRmLvbSvigGEMUSJ-JPfkoU8hQ</recordid><startdate>20230228</startdate><enddate>20230228</enddate><creator>Piao, Haiyin</creator><creator>Han, Yue</creator><creator>He, Shaoming</creator><creator>Yu, Chao</creator><creator>Fan, Songyuan</creator><creator>Hou, Yaqing</creator><creator>Bai, Chengchao</creator><creator>Mo, Li</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0001-6432-5187</orcidid><orcidid>https://orcid.org/0000-0002-9929-2650</orcidid><orcidid>https://orcid.org/0000-0002-0349-9869</orcidid><orcidid>https://orcid.org/0000-0002-4371-3663</orcidid><orcidid>https://orcid.org/0000-0002-8519-4750</orcidid></search><sort><creationdate>20230228</creationdate><title>Spatio-Temporal Relationship Cognitive Learning for Multi-Robot Air Combat</title><author>Piao, Haiyin ; Han, Yue ; He, Shaoming ; Yu, Chao ; Fan, Songyuan ; Hou, Yaqing ; Bai, Chengchao ; Mo, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_100570683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>air combat</topic><topic>Autonomous aerial vehicles</topic><topic>Cognition</topic><topic>Feature extraction</topic><topic>Graph Neural Network (GNN)</topic><topic>Graph neural networks</topic><topic>Multi-Agent Deep Reinforcement Learning (MADRL)</topic><topic>relationship</topic><topic>robot</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>spatio-temporal</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Piao, Haiyin</creatorcontrib><creatorcontrib>Han, Yue</creatorcontrib><creatorcontrib>He, Shaoming</creatorcontrib><creatorcontrib>Yu, Chao</creatorcontrib><creatorcontrib>Fan, Songyuan</creatorcontrib><creatorcontrib>Hou, Yaqing</creatorcontrib><creatorcontrib>Bai, Chengchao</creatorcontrib><creatorcontrib>Mo, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Piao, Haiyin</au><au>Han, Yue</au><au>He, Shaoming</au><au>Yu, Chao</au><au>Fan, Songyuan</au><au>Hou, Yaqing</au><au>Bai, Chengchao</au><au>Mo, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatio-Temporal Relationship Cognitive Learning for Multi-Robot Air Combat</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2023-02-28</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2379-8920</issn><coden>ITCDA4</coden><abstract>Relationship cognition is crucial to learning-based Multi-Robot Systems (MRSs). As an advanced application of MRSs for fierce confrontation, the relationships among autonomous air combat robots inherently present complex time-varying characteristics, which makes relationship cognition even more difficult. However, previous studies have only focused on spatial cooperative relationships, thus ignoring the potential impact of the temporal dynamics of relationships on long-term cooperative behaviors. To tackle this drawback, we propose a novel Multi-Agent Deep Reinforcement Learning (MADRL) based autonomous air combat robots collaboration algorithm, called Spatio-Temporal Aerial robots Relationship Co-Optimization (STARCO). STARCO formulates the complex dynamic relationship cognition problem into a spatio-temporal deep Graph Neural Network (GNN) learning problem. On this basis, we overcome the limitations of previous methods, by accurately capturing the key spatio-temporal patterns from aggressive air combat, and enable global collaborative decision-making through joint strategy optimization. An empirical study shows that STARCO outperforms several state-of-the-art MARL baselines by 24.6% in learning performance. We also demonstrate that STARCO is capable of evolving various cooperative strategies comparable to human expert knowledge.</abstract><pub>IEEE</pub><doi>10.1109/TCDS.2023.3250819</doi><orcidid>https://orcid.org/0000-0001-6432-5187</orcidid><orcidid>https://orcid.org/0000-0002-9929-2650</orcidid><orcidid>https://orcid.org/0000-0002-0349-9869</orcidid><orcidid>https://orcid.org/0000-0002-4371-3663</orcidid><orcidid>https://orcid.org/0000-0002-8519-4750</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-8920
ispartof IEEE transactions on cognitive and developmental systems, 2023-02, p.1-1
issn 2379-8920
language eng
recordid cdi_ieee_primary_10057068
source IEEE Electronic Library (IEL)
subjects air combat
Autonomous aerial vehicles
Cognition
Feature extraction
Graph Neural Network (GNN)
Graph neural networks
Multi-Agent Deep Reinforcement Learning (MADRL)
relationship
robot
Robot kinematics
Robots
spatio-temporal
Topology
title Spatio-Temporal Relationship Cognitive Learning for Multi-Robot Air Combat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatio-Temporal%20Relationship%20Cognitive%20Learning%20for%20Multi-Robot%20Air%20Combat&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Piao,%20Haiyin&rft.date=2023-02-28&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2379-8920&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2023.3250819&rft_dat=%3Cieee_RIE%3E10057068%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10057068&rfr_iscdi=true