Spatio-Temporal Relationship Cognitive Learning for Multi-Robot Air Combat
Relationship cognition is crucial to learning-based Multi-Robot Systems (MRSs). As an advanced application of MRSs for fierce confrontation, the relationships among autonomous air combat robots inherently present complex time-varying characteristics, which makes relationship cognition even more diff...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cognitive and developmental systems 2023-02, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on cognitive and developmental systems |
container_volume | |
creator | Piao, Haiyin Han, Yue He, Shaoming Yu, Chao Fan, Songyuan Hou, Yaqing Bai, Chengchao Mo, Li |
description | Relationship cognition is crucial to learning-based Multi-Robot Systems (MRSs). As an advanced application of MRSs for fierce confrontation, the relationships among autonomous air combat robots inherently present complex time-varying characteristics, which makes relationship cognition even more difficult. However, previous studies have only focused on spatial cooperative relationships, thus ignoring the potential impact of the temporal dynamics of relationships on long-term cooperative behaviors. To tackle this drawback, we propose a novel Multi-Agent Deep Reinforcement Learning (MADRL) based autonomous air combat robots collaboration algorithm, called Spatio-Temporal Aerial robots Relationship Co-Optimization (STARCO). STARCO formulates the complex dynamic relationship cognition problem into a spatio-temporal deep Graph Neural Network (GNN) learning problem. On this basis, we overcome the limitations of previous methods, by accurately capturing the key spatio-temporal patterns from aggressive air combat, and enable global collaborative decision-making through joint strategy optimization. An empirical study shows that STARCO outperforms several state-of-the-art MARL baselines by 24.6% in learning performance. We also demonstrate that STARCO is capable of evolving various cooperative strategies comparable to human expert knowledge. |
doi_str_mv | 10.1109/TCDS.2023.3250819 |
format | Article |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10057068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10057068</ieee_id><sourcerecordid>10057068</sourcerecordid><originalsourceid>FETCH-ieee_primary_100570683</originalsourceid><addsrcrecordid>eNqFir0KwjAYADMoKNoHEBzyAq1fEvs3SlVEdGm7lxTS-knbhDQKvr0K7k4Hd0fIikHAGKSbMtsXAQcuAsFDSFg6IXMu4tRPUg4z4o3jHQBYJOJkG8_JuTDSofZL1RttZUdz1X3FMN7Q0Ey3Azp8KnpR0g44tLTRll4fnUM_17V2dIf2s_W1dEsybWQ3Ku_HBVkfD2V28lEpVRmLvbSvigGEMUSJ-JPfkoU8hQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatio-Temporal Relationship Cognitive Learning for Multi-Robot Air Combat</title><source>IEEE Electronic Library (IEL)</source><creator>Piao, Haiyin ; Han, Yue ; He, Shaoming ; Yu, Chao ; Fan, Songyuan ; Hou, Yaqing ; Bai, Chengchao ; Mo, Li</creator><creatorcontrib>Piao, Haiyin ; Han, Yue ; He, Shaoming ; Yu, Chao ; Fan, Songyuan ; Hou, Yaqing ; Bai, Chengchao ; Mo, Li</creatorcontrib><description>Relationship cognition is crucial to learning-based Multi-Robot Systems (MRSs). As an advanced application of MRSs for fierce confrontation, the relationships among autonomous air combat robots inherently present complex time-varying characteristics, which makes relationship cognition even more difficult. However, previous studies have only focused on spatial cooperative relationships, thus ignoring the potential impact of the temporal dynamics of relationships on long-term cooperative behaviors. To tackle this drawback, we propose a novel Multi-Agent Deep Reinforcement Learning (MADRL) based autonomous air combat robots collaboration algorithm, called Spatio-Temporal Aerial robots Relationship Co-Optimization (STARCO). STARCO formulates the complex dynamic relationship cognition problem into a spatio-temporal deep Graph Neural Network (GNN) learning problem. On this basis, we overcome the limitations of previous methods, by accurately capturing the key spatio-temporal patterns from aggressive air combat, and enable global collaborative decision-making through joint strategy optimization. An empirical study shows that STARCO outperforms several state-of-the-art MARL baselines by 24.6% in learning performance. We also demonstrate that STARCO is capable of evolving various cooperative strategies comparable to human expert knowledge.</description><identifier>ISSN: 2379-8920</identifier><identifier>DOI: 10.1109/TCDS.2023.3250819</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>IEEE</publisher><subject>air combat ; Autonomous aerial vehicles ; Cognition ; Feature extraction ; Graph Neural Network (GNN) ; Graph neural networks ; Multi-Agent Deep Reinforcement Learning (MADRL) ; relationship ; robot ; Robot kinematics ; Robots ; spatio-temporal ; Topology</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2023-02, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6432-5187 ; 0000-0002-9929-2650 ; 0000-0002-0349-9869 ; 0000-0002-4371-3663 ; 0000-0002-8519-4750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10057068$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10057068$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Piao, Haiyin</creatorcontrib><creatorcontrib>Han, Yue</creatorcontrib><creatorcontrib>He, Shaoming</creatorcontrib><creatorcontrib>Yu, Chao</creatorcontrib><creatorcontrib>Fan, Songyuan</creatorcontrib><creatorcontrib>Hou, Yaqing</creatorcontrib><creatorcontrib>Bai, Chengchao</creatorcontrib><creatorcontrib>Mo, Li</creatorcontrib><title>Spatio-Temporal Relationship Cognitive Learning for Multi-Robot Air Combat</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>Relationship cognition is crucial to learning-based Multi-Robot Systems (MRSs). As an advanced application of MRSs for fierce confrontation, the relationships among autonomous air combat robots inherently present complex time-varying characteristics, which makes relationship cognition even more difficult. However, previous studies have only focused on spatial cooperative relationships, thus ignoring the potential impact of the temporal dynamics of relationships on long-term cooperative behaviors. To tackle this drawback, we propose a novel Multi-Agent Deep Reinforcement Learning (MADRL) based autonomous air combat robots collaboration algorithm, called Spatio-Temporal Aerial robots Relationship Co-Optimization (STARCO). STARCO formulates the complex dynamic relationship cognition problem into a spatio-temporal deep Graph Neural Network (GNN) learning problem. On this basis, we overcome the limitations of previous methods, by accurately capturing the key spatio-temporal patterns from aggressive air combat, and enable global collaborative decision-making through joint strategy optimization. An empirical study shows that STARCO outperforms several state-of-the-art MARL baselines by 24.6% in learning performance. We also demonstrate that STARCO is capable of evolving various cooperative strategies comparable to human expert knowledge.</description><subject>air combat</subject><subject>Autonomous aerial vehicles</subject><subject>Cognition</subject><subject>Feature extraction</subject><subject>Graph Neural Network (GNN)</subject><subject>Graph neural networks</subject><subject>Multi-Agent Deep Reinforcement Learning (MADRL)</subject><subject>relationship</subject><subject>robot</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>spatio-temporal</subject><subject>Topology</subject><issn>2379-8920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFir0KwjAYADMoKNoHEBzyAq1fEvs3SlVEdGm7lxTS-knbhDQKvr0K7k4Hd0fIikHAGKSbMtsXAQcuAsFDSFg6IXMu4tRPUg4z4o3jHQBYJOJkG8_JuTDSofZL1RttZUdz1X3FMN7Q0Ey3Azp8KnpR0g44tLTRll4fnUM_17V2dIf2s_W1dEsybWQ3Ku_HBVkfD2V28lEpVRmLvbSvigGEMUSJ-JPfkoU8hQ</recordid><startdate>20230228</startdate><enddate>20230228</enddate><creator>Piao, Haiyin</creator><creator>Han, Yue</creator><creator>He, Shaoming</creator><creator>Yu, Chao</creator><creator>Fan, Songyuan</creator><creator>Hou, Yaqing</creator><creator>Bai, Chengchao</creator><creator>Mo, Li</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0001-6432-5187</orcidid><orcidid>https://orcid.org/0000-0002-9929-2650</orcidid><orcidid>https://orcid.org/0000-0002-0349-9869</orcidid><orcidid>https://orcid.org/0000-0002-4371-3663</orcidid><orcidid>https://orcid.org/0000-0002-8519-4750</orcidid></search><sort><creationdate>20230228</creationdate><title>Spatio-Temporal Relationship Cognitive Learning for Multi-Robot Air Combat</title><author>Piao, Haiyin ; Han, Yue ; He, Shaoming ; Yu, Chao ; Fan, Songyuan ; Hou, Yaqing ; Bai, Chengchao ; Mo, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_100570683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>air combat</topic><topic>Autonomous aerial vehicles</topic><topic>Cognition</topic><topic>Feature extraction</topic><topic>Graph Neural Network (GNN)</topic><topic>Graph neural networks</topic><topic>Multi-Agent Deep Reinforcement Learning (MADRL)</topic><topic>relationship</topic><topic>robot</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>spatio-temporal</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Piao, Haiyin</creatorcontrib><creatorcontrib>Han, Yue</creatorcontrib><creatorcontrib>He, Shaoming</creatorcontrib><creatorcontrib>Yu, Chao</creatorcontrib><creatorcontrib>Fan, Songyuan</creatorcontrib><creatorcontrib>Hou, Yaqing</creatorcontrib><creatorcontrib>Bai, Chengchao</creatorcontrib><creatorcontrib>Mo, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Piao, Haiyin</au><au>Han, Yue</au><au>He, Shaoming</au><au>Yu, Chao</au><au>Fan, Songyuan</au><au>Hou, Yaqing</au><au>Bai, Chengchao</au><au>Mo, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatio-Temporal Relationship Cognitive Learning for Multi-Robot Air Combat</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2023-02-28</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2379-8920</issn><coden>ITCDA4</coden><abstract>Relationship cognition is crucial to learning-based Multi-Robot Systems (MRSs). As an advanced application of MRSs for fierce confrontation, the relationships among autonomous air combat robots inherently present complex time-varying characteristics, which makes relationship cognition even more difficult. However, previous studies have only focused on spatial cooperative relationships, thus ignoring the potential impact of the temporal dynamics of relationships on long-term cooperative behaviors. To tackle this drawback, we propose a novel Multi-Agent Deep Reinforcement Learning (MADRL) based autonomous air combat robots collaboration algorithm, called Spatio-Temporal Aerial robots Relationship Co-Optimization (STARCO). STARCO formulates the complex dynamic relationship cognition problem into a spatio-temporal deep Graph Neural Network (GNN) learning problem. On this basis, we overcome the limitations of previous methods, by accurately capturing the key spatio-temporal patterns from aggressive air combat, and enable global collaborative decision-making through joint strategy optimization. An empirical study shows that STARCO outperforms several state-of-the-art MARL baselines by 24.6% in learning performance. We also demonstrate that STARCO is capable of evolving various cooperative strategies comparable to human expert knowledge.</abstract><pub>IEEE</pub><doi>10.1109/TCDS.2023.3250819</doi><orcidid>https://orcid.org/0000-0001-6432-5187</orcidid><orcidid>https://orcid.org/0000-0002-9929-2650</orcidid><orcidid>https://orcid.org/0000-0002-0349-9869</orcidid><orcidid>https://orcid.org/0000-0002-4371-3663</orcidid><orcidid>https://orcid.org/0000-0002-8519-4750</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-8920 |
ispartof | IEEE transactions on cognitive and developmental systems, 2023-02, p.1-1 |
issn | 2379-8920 |
language | eng |
recordid | cdi_ieee_primary_10057068 |
source | IEEE Electronic Library (IEL) |
subjects | air combat Autonomous aerial vehicles Cognition Feature extraction Graph Neural Network (GNN) Graph neural networks Multi-Agent Deep Reinforcement Learning (MADRL) relationship robot Robot kinematics Robots spatio-temporal Topology |
title | Spatio-Temporal Relationship Cognitive Learning for Multi-Robot Air Combat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatio-Temporal%20Relationship%20Cognitive%20Learning%20for%20Multi-Robot%20Air%20Combat&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Piao,%20Haiyin&rft.date=2023-02-28&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2379-8920&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2023.3250819&rft_dat=%3Cieee_RIE%3E10057068%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10057068&rfr_iscdi=true |