3D HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection

3D object detection is a vital part of outdoor scene perception. Learning the complete size and accurate positioning of objects from an incomplete point cloud spatial structure is essential to 3D object detection. We propose a novel flexible 3D heatmap auxiliary network for object detection (3D HANe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023-02, p.1-1
Hauptverfasser: Xia, Qiming, Chen, Yidong, Cai, Guorong, Chen, Guikun, Xie, Daoshun, Su, Jinhe, Wang, Zongyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume
creator Xia, Qiming
Chen, Yidong
Cai, Guorong
Chen, Guikun
Xie, Daoshun
Su, Jinhe
Wang, Zongyue
description 3D object detection is a vital part of outdoor scene perception. Learning the complete size and accurate positioning of objects from an incomplete point cloud spatial structure is essential to 3D object detection. We propose a novel flexible 3D heatmap auxiliary network for object detection (3D HANet). To obtain complete structure and location information from an incomplete point cloud structure, we propose a 3D heatmap to reflect object information. Also, we design a plug-and-play auxiliary network based on 3D heatmap, which improves the accuracy of the entire detection network without extra computation in the inference stage. We validate the 3D heatmap auxiliary network on the basis of three classic 3D object detection networks: PointPillars, SECOND and SASSD. Experimental results show that our auxiliary network augments the feature extraction ability of the backbone network, which is manifested in that the predicted boxes and the ground truth boxes are more suitable in size and more aligned in direction. Furthermore, we conducted verification experiments on the state-of-the-art detector, CasA, and made a further improvement on the official ranking of KITTI dataset.
doi_str_mv 10.1109/TGRS.2023.3250229
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10056279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10056279</ieee_id><sourcerecordid>10056279</sourcerecordid><originalsourceid>FETCH-ieee_primary_100562793</originalsourceid><addsrcrecordid>eNqFjM0KgkAURmdRkP08QNDivoB2Z0xt2klmrgrKvWhcYUxTRiN7-wzatzrwnY_D2JKjxTnKdXy8XC2BwrZs4aAQcsQM5NI1xVaKCZu2bYHINw73DBbaAUT-ibod-BCW1KusJPiOlHZV2oD_7FWpUv2G4fSq9R3yWsM5K-jWQUDdAFU_5mycp2VLix9nbBUe4n1kKiJKGq2qoZBwRMcVnrT_6A_wvDiN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Xia, Qiming ; Chen, Yidong ; Cai, Guorong ; Chen, Guikun ; Xie, Daoshun ; Su, Jinhe ; Wang, Zongyue</creator><creatorcontrib>Xia, Qiming ; Chen, Yidong ; Cai, Guorong ; Chen, Guikun ; Xie, Daoshun ; Su, Jinhe ; Wang, Zongyue</creatorcontrib><description>3D object detection is a vital part of outdoor scene perception. Learning the complete size and accurate positioning of objects from an incomplete point cloud spatial structure is essential to 3D object detection. We propose a novel flexible 3D heatmap auxiliary network for object detection (3D HANet). To obtain complete structure and location information from an incomplete point cloud structure, we propose a 3D heatmap to reflect object information. Also, we design a plug-and-play auxiliary network based on 3D heatmap, which improves the accuracy of the entire detection network without extra computation in the inference stage. We validate the 3D heatmap auxiliary network on the basis of three classic 3D object detection networks: PointPillars, SECOND and SASSD. Experimental results show that our auxiliary network augments the feature extraction ability of the backbone network, which is manifested in that the predicted boxes and the ground truth boxes are more suitable in size and more aligned in direction. Furthermore, we conducted verification experiments on the state-of-the-art detector, CasA, and made a further improvement on the official ranking of KITTI dataset.</description><identifier>ISSN: 0196-2892</identifier><identifier>DOI: 10.1109/TGRS.2023.3250229</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D heatmap ; auxiliary network ; Detectors ; Feature extraction ; Object detection ; outdoor scene perception ; point cloud ; Point cloud compression ; Space heating ; Task analysis ; Three-dimensional displays</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-02, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8091-271X ; 0000-0002-9227-007X ; 0000-0003-2409-7065 ; 0000-0001-6839-661X ; 0000-0002-6440-5694 ; 0000-0003-1707-5685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10056279$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10056279$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xia, Qiming</creatorcontrib><creatorcontrib>Chen, Yidong</creatorcontrib><creatorcontrib>Cai, Guorong</creatorcontrib><creatorcontrib>Chen, Guikun</creatorcontrib><creatorcontrib>Xie, Daoshun</creatorcontrib><creatorcontrib>Su, Jinhe</creatorcontrib><creatorcontrib>Wang, Zongyue</creatorcontrib><title>3D HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>3D object detection is a vital part of outdoor scene perception. Learning the complete size and accurate positioning of objects from an incomplete point cloud spatial structure is essential to 3D object detection. We propose a novel flexible 3D heatmap auxiliary network for object detection (3D HANet). To obtain complete structure and location information from an incomplete point cloud structure, we propose a 3D heatmap to reflect object information. Also, we design a plug-and-play auxiliary network based on 3D heatmap, which improves the accuracy of the entire detection network without extra computation in the inference stage. We validate the 3D heatmap auxiliary network on the basis of three classic 3D object detection networks: PointPillars, SECOND and SASSD. Experimental results show that our auxiliary network augments the feature extraction ability of the backbone network, which is manifested in that the predicted boxes and the ground truth boxes are more suitable in size and more aligned in direction. Furthermore, we conducted verification experiments on the state-of-the-art detector, CasA, and made a further improvement on the official ranking of KITTI dataset.</description><subject>3D heatmap</subject><subject>auxiliary network</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Object detection</subject><subject>outdoor scene perception</subject><subject>point cloud</subject><subject>Point cloud compression</subject><subject>Space heating</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><issn>0196-2892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFjM0KgkAURmdRkP08QNDivoB2Z0xt2klmrgrKvWhcYUxTRiN7-wzatzrwnY_D2JKjxTnKdXy8XC2BwrZs4aAQcsQM5NI1xVaKCZu2bYHINw73DBbaAUT-ibod-BCW1KusJPiOlHZV2oD_7FWpUv2G4fSq9R3yWsM5K-jWQUDdAFU_5mycp2VLix9nbBUe4n1kKiJKGq2qoZBwRMcVnrT_6A_wvDiN</recordid><startdate>20230227</startdate><enddate>20230227</enddate><creator>Xia, Qiming</creator><creator>Chen, Yidong</creator><creator>Cai, Guorong</creator><creator>Chen, Guikun</creator><creator>Xie, Daoshun</creator><creator>Su, Jinhe</creator><creator>Wang, Zongyue</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0001-8091-271X</orcidid><orcidid>https://orcid.org/0000-0002-9227-007X</orcidid><orcidid>https://orcid.org/0000-0003-2409-7065</orcidid><orcidid>https://orcid.org/0000-0001-6839-661X</orcidid><orcidid>https://orcid.org/0000-0002-6440-5694</orcidid><orcidid>https://orcid.org/0000-0003-1707-5685</orcidid></search><sort><creationdate>20230227</creationdate><title>3D HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection</title><author>Xia, Qiming ; Chen, Yidong ; Cai, Guorong ; Chen, Guikun ; Xie, Daoshun ; Su, Jinhe ; Wang, Zongyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_100562793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D heatmap</topic><topic>auxiliary network</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Object detection</topic><topic>outdoor scene perception</topic><topic>point cloud</topic><topic>Point cloud compression</topic><topic>Space heating</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Qiming</creatorcontrib><creatorcontrib>Chen, Yidong</creatorcontrib><creatorcontrib>Cai, Guorong</creatorcontrib><creatorcontrib>Chen, Guikun</creatorcontrib><creatorcontrib>Xie, Daoshun</creatorcontrib><creatorcontrib>Su, Jinhe</creatorcontrib><creatorcontrib>Wang, Zongyue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xia, Qiming</au><au>Chen, Yidong</au><au>Cai, Guorong</au><au>Chen, Guikun</au><au>Xie, Daoshun</au><au>Su, Jinhe</au><au>Wang, Zongyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-02-27</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><coden>IGRSD2</coden><abstract>3D object detection is a vital part of outdoor scene perception. Learning the complete size and accurate positioning of objects from an incomplete point cloud spatial structure is essential to 3D object detection. We propose a novel flexible 3D heatmap auxiliary network for object detection (3D HANet). To obtain complete structure and location information from an incomplete point cloud structure, we propose a 3D heatmap to reflect object information. Also, we design a plug-and-play auxiliary network based on 3D heatmap, which improves the accuracy of the entire detection network without extra computation in the inference stage. We validate the 3D heatmap auxiliary network on the basis of three classic 3D object detection networks: PointPillars, SECOND and SASSD. Experimental results show that our auxiliary network augments the feature extraction ability of the backbone network, which is manifested in that the predicted boxes and the ground truth boxes are more suitable in size and more aligned in direction. Furthermore, we conducted verification experiments on the state-of-the-art detector, CasA, and made a further improvement on the official ranking of KITTI dataset.</abstract><pub>IEEE</pub><doi>10.1109/TGRS.2023.3250229</doi><orcidid>https://orcid.org/0000-0001-8091-271X</orcidid><orcidid>https://orcid.org/0000-0002-9227-007X</orcidid><orcidid>https://orcid.org/0000-0003-2409-7065</orcidid><orcidid>https://orcid.org/0000-0001-6839-661X</orcidid><orcidid>https://orcid.org/0000-0002-6440-5694</orcidid><orcidid>https://orcid.org/0000-0003-1707-5685</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023-02, p.1-1
issn 0196-2892
language eng
recordid cdi_ieee_primary_10056279
source IEEE Electronic Library (IEL)
subjects 3D heatmap
auxiliary network
Detectors
Feature extraction
Object detection
outdoor scene perception
point cloud
Point cloud compression
Space heating
Task analysis
Three-dimensional displays
title 3D HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20HANet:%20A%20Flexible%203D%20Heatmap%20Auxiliary%20Network%20for%20Object%20Detection&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Xia,%20Qiming&rft.date=2023-02-27&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3250229&rft_dat=%3Cieee_RIE%3E10056279%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10056279&rfr_iscdi=true