A Bare-bones Particle Swarm Optimization with Crossed Memory for Global Optimization

The offspring selection strategy is the core of evolutionary algorithms, which directly affects the method's accuracy. Normally, to improve the search accuracy in local areas, the population converges quickly around the optimal individual. However, excessive aggregation can narrow the search ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Guo, Jia, Zhou, Guoyuan, Di, Yi, Shi, Binghua, Yan, Ke, Sato, Yuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Guo, Jia
Zhou, Guoyuan
Di, Yi
Shi, Binghua
Yan, Ke
Sato, Yuji
description The offspring selection strategy is the core of evolutionary algorithms, which directly affects the method's accuracy. Normally, to improve the search accuracy in local areas, the population converges quickly around the optimal individual. However, excessive aggregation can narrow the search range of the population, and thus the population may be trapped by local optima. To overcome this problem, a bare-bones particle swarm optimization with crossed memory (BPSO-CM) is proposed in this work. The BPSO-CM contains a multi-memory storage mechanism (MSM) and an elite offspring selection strategy (EOSS). The MSM enables an extra storage space to extend the search ability of the particle swarm and the EOSS enhances the local minimum escaping ability of the particle swarm. The population is endowed with the ability of enhanced global search through the cooperation of the MSM and the EOSS. To verify the performance of the BPSO-CM, the CEC2017 benchmark functions are used in experiments, five population-based methods are selected in the control group. Finally, experimental results proved that the BPSO-CM can present highly accurate results for global optimization problems.
doi_str_mv 10.1109/ACCESS.2023.3250228
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10056156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10056156</ieee_id><doaj_id>oai_doaj_org_article_595c9aba9bb346e19e081921e9bbb476</doaj_id><sourcerecordid>2795804006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-8ecead09fa917fbaefa73ff1ba570cb8a843e4f557a8d3c626f7d0c78a81a08f3</originalsourceid><addsrcrecordid>eNpVUV1PwjAUXYwmEuUX6EMTn4f9WNf1ERdEEgwm4HNzu93qCFDsRgj-eocjBu9Lb07PObe9J4ruGB0wRvXjMM9H8_mAUy4GgkvKeXYR9ThLdSykSC_P-uuoX9dL2lbWQlL1osWQPEHA2PoN1uQNQlMVKyTzPYQ1mW2bal19Q1P5DdlXzSfJg69rLMkrrn04EOcDGa-8hdU_7m105WBVY_903kTvz6NF_hJPZ-NJPpzGRUJ1E2dYIJRUO9BMOQvoQAnnmAWpaGEzyBKBiZNSQVaKIuWpUyUtVHvBgGZO3ESTzrf0sDTbUK0hHIyHyvwCPnyY04eM1LLQYEFbK5IUmcZ2BZozbAGbqLT1eui8tsF_7bBuzNLvwqZ9vuFKy4wmlB5ZomMVx0UEdH9TGTXHNEyXhjmmYU5ptKr7TlUh4pmCypTJVPwATg2GqA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795804006</pqid></control><display><type>article</type><title>A Bare-bones Particle Swarm Optimization with Crossed Memory for Global Optimization</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Guo, Jia ; Zhou, Guoyuan ; Di, Yi ; Shi, Binghua ; Yan, Ke ; Sato, Yuji</creator><creatorcontrib>Guo, Jia ; Zhou, Guoyuan ; Di, Yi ; Shi, Binghua ; Yan, Ke ; Sato, Yuji</creatorcontrib><description>The offspring selection strategy is the core of evolutionary algorithms, which directly affects the method's accuracy. Normally, to improve the search accuracy in local areas, the population converges quickly around the optimal individual. However, excessive aggregation can narrow the search range of the population, and thus the population may be trapped by local optima. To overcome this problem, a bare-bones particle swarm optimization with crossed memory (BPSO-CM) is proposed in this work. The BPSO-CM contains a multi-memory storage mechanism (MSM) and an elite offspring selection strategy (EOSS). The MSM enables an extra storage space to extend the search ability of the particle swarm and the EOSS enhances the local minimum escaping ability of the particle swarm. The population is endowed with the ability of enhanced global search through the cooperation of the MSM and the EOSS. To verify the performance of the BPSO-CM, the CEC2017 benchmark functions are used in experiments, five population-based methods are selected in the control group. Finally, experimental results proved that the BPSO-CM can present highly accurate results for global optimization problems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3250228</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Crossed memory ; elite offspring selection ; Evolutionary algorithms ; Global optimization ; Heuristic algorithms ; Mathematical models ; Optimization ; Particle swarm optimization ; Search problems ; Searching ; Social factors ; Statistics ; Strategy</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-8ecead09fa917fbaefa73ff1ba570cb8a843e4f557a8d3c626f7d0c78a81a08f3</citedby><cites>FETCH-LOGICAL-c409t-8ecead09fa917fbaefa73ff1ba570cb8a843e4f557a8d3c626f7d0c78a81a08f3</cites><orcidid>0000-0002-2273-6495 ; 0000-0001-5042-4045 ; 0000-0003-4469-5759 ; 0000-0001-8387-7710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10056156$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,27638,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Guo, Jia</creatorcontrib><creatorcontrib>Zhou, Guoyuan</creatorcontrib><creatorcontrib>Di, Yi</creatorcontrib><creatorcontrib>Shi, Binghua</creatorcontrib><creatorcontrib>Yan, Ke</creatorcontrib><creatorcontrib>Sato, Yuji</creatorcontrib><title>A Bare-bones Particle Swarm Optimization with Crossed Memory for Global Optimization</title><title>IEEE access</title><addtitle>Access</addtitle><description>The offspring selection strategy is the core of evolutionary algorithms, which directly affects the method's accuracy. Normally, to improve the search accuracy in local areas, the population converges quickly around the optimal individual. However, excessive aggregation can narrow the search range of the population, and thus the population may be trapped by local optima. To overcome this problem, a bare-bones particle swarm optimization with crossed memory (BPSO-CM) is proposed in this work. The BPSO-CM contains a multi-memory storage mechanism (MSM) and an elite offspring selection strategy (EOSS). The MSM enables an extra storage space to extend the search ability of the particle swarm and the EOSS enhances the local minimum escaping ability of the particle swarm. The population is endowed with the ability of enhanced global search through the cooperation of the MSM and the EOSS. To verify the performance of the BPSO-CM, the CEC2017 benchmark functions are used in experiments, five population-based methods are selected in the control group. Finally, experimental results proved that the BPSO-CM can present highly accurate results for global optimization problems.</description><subject>Crossed memory</subject><subject>elite offspring selection</subject><subject>Evolutionary algorithms</subject><subject>Global optimization</subject><subject>Heuristic algorithms</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Search problems</subject><subject>Searching</subject><subject>Social factors</subject><subject>Statistics</subject><subject>Strategy</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVUV1PwjAUXYwmEuUX6EMTn4f9WNf1ERdEEgwm4HNzu93qCFDsRgj-eocjBu9Lb07PObe9J4ruGB0wRvXjMM9H8_mAUy4GgkvKeXYR9ThLdSykSC_P-uuoX9dL2lbWQlL1osWQPEHA2PoN1uQNQlMVKyTzPYQ1mW2bal19Q1P5DdlXzSfJg69rLMkrrn04EOcDGa-8hdU_7m105WBVY_903kTvz6NF_hJPZ-NJPpzGRUJ1E2dYIJRUO9BMOQvoQAnnmAWpaGEzyBKBiZNSQVaKIuWpUyUtVHvBgGZO3ESTzrf0sDTbUK0hHIyHyvwCPnyY04eM1LLQYEFbK5IUmcZ2BZozbAGbqLT1eui8tsF_7bBuzNLvwqZ9vuFKy4wmlB5ZomMVx0UEdH9TGTXHNEyXhjmmYU5ptKr7TlUh4pmCypTJVPwATg2GqA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Guo, Jia</creator><creator>Zhou, Guoyuan</creator><creator>Di, Yi</creator><creator>Shi, Binghua</creator><creator>Yan, Ke</creator><creator>Sato, Yuji</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2273-6495</orcidid><orcidid>https://orcid.org/0000-0001-5042-4045</orcidid><orcidid>https://orcid.org/0000-0003-4469-5759</orcidid><orcidid>https://orcid.org/0000-0001-8387-7710</orcidid></search><sort><creationdate>20230101</creationdate><title>A Bare-bones Particle Swarm Optimization with Crossed Memory for Global Optimization</title><author>Guo, Jia ; Zhou, Guoyuan ; Di, Yi ; Shi, Binghua ; Yan, Ke ; Sato, Yuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-8ecead09fa917fbaefa73ff1ba570cb8a843e4f557a8d3c626f7d0c78a81a08f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Crossed memory</topic><topic>elite offspring selection</topic><topic>Evolutionary algorithms</topic><topic>Global optimization</topic><topic>Heuristic algorithms</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Search problems</topic><topic>Searching</topic><topic>Social factors</topic><topic>Statistics</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jia</creatorcontrib><creatorcontrib>Zhou, Guoyuan</creatorcontrib><creatorcontrib>Di, Yi</creatorcontrib><creatorcontrib>Shi, Binghua</creatorcontrib><creatorcontrib>Yan, Ke</creatorcontrib><creatorcontrib>Sato, Yuji</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jia</au><au>Zhou, Guoyuan</au><au>Di, Yi</au><au>Shi, Binghua</au><au>Yan, Ke</au><au>Sato, Yuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bare-bones Particle Swarm Optimization with Crossed Memory for Global Optimization</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The offspring selection strategy is the core of evolutionary algorithms, which directly affects the method's accuracy. Normally, to improve the search accuracy in local areas, the population converges quickly around the optimal individual. However, excessive aggregation can narrow the search range of the population, and thus the population may be trapped by local optima. To overcome this problem, a bare-bones particle swarm optimization with crossed memory (BPSO-CM) is proposed in this work. The BPSO-CM contains a multi-memory storage mechanism (MSM) and an elite offspring selection strategy (EOSS). The MSM enables an extra storage space to extend the search ability of the particle swarm and the EOSS enhances the local minimum escaping ability of the particle swarm. The population is endowed with the ability of enhanced global search through the cooperation of the MSM and the EOSS. To verify the performance of the BPSO-CM, the CEC2017 benchmark functions are used in experiments, five population-based methods are selected in the control group. Finally, experimental results proved that the BPSO-CM can present highly accurate results for global optimization problems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3250228</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2273-6495</orcidid><orcidid>https://orcid.org/0000-0001-5042-4045</orcidid><orcidid>https://orcid.org/0000-0003-4469-5759</orcidid><orcidid>https://orcid.org/0000-0001-8387-7710</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10056156
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Crossed memory
elite offspring selection
Evolutionary algorithms
Global optimization
Heuristic algorithms
Mathematical models
Optimization
Particle swarm optimization
Search problems
Searching
Social factors
Statistics
Strategy
title A Bare-bones Particle Swarm Optimization with Crossed Memory for Global Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T17%3A10%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bare-bones%20Particle%20Swarm%20Optimization%20with%20Crossed%20Memory%20for%20Global%20Optimization&rft.jtitle=IEEE%20access&rft.au=Guo,%20Jia&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3250228&rft_dat=%3Cproquest_ieee_%3E2795804006%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795804006&rft_id=info:pmid/&rft_ieee_id=10056156&rft_doaj_id=oai_doaj_org_article_595c9aba9bb346e19e081921e9bbb476&rfr_iscdi=true