Low-latency Dimensional Expansion and Anomaly Detection empowered Secure IoT Network
The Internet of Things (IoT) consists of a myriad of smart devices and offers tremendous innovation opportunities in industry, homes, and businesses to enhance the productivity and the quality of life. However, ecosystem of infrastructures and the services associated with IoT devices have introduced...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2023-09, Vol.20 (3), p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE eTransactions on network and service management |
container_volume | 20 |
creator | Shao, Wenhao Wei, Yanyan Rajapaksha, Praboda Li, Dun Luo, Zhigang Crespi, Noel |
description | The Internet of Things (IoT) consists of a myriad of smart devices and offers tremendous innovation opportunities in industry, homes, and businesses to enhance the productivity and the quality of life. However, ecosystem of infrastructures and the services associated with IoT devices have introduced a new set of vulnerabilities and threats, resulting in abnormal values of information collected by sensors, jeopardizing system security. To secure sensor networks, it must be possible to detect such anomalies or sequences of patterns in IoT devices that significantly deviate from normal behavior. To perform this task, this paper proposes a real-time streaming anomaly detection method based on a Bloom filter combined with hashing. This method expands the data dimensions through a hashing algorithm, and then adopts competitive learning (Winner-Take-All) to build a multi-layer Bloom Filter anomaly detection model. The feasibility of the proposed algorithm is verified theoretically using two datasets, KDD (to detect anomalies at the TCP/IP network level) and Credit (to detect anomalies during credit card transactions). The simulation results show that the proposed in this paper can effectively identify anomalies in the simulation data streams, with almost 95% accuracy for both datasets. |
doi_str_mv | 10.1109/TNSM.2023.3246798 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10049195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10049195</ieee_id><sourcerecordid>2875573400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-1c64d09e8d658cb8283acbbeb1d4ca360113d5a71cea605ccdfc316008ec54613</originalsourceid><addsrcrecordid>eNpNkE9Pg0AUxDdGE2v1A5h4IPHkgbp_WNg9NrXaJlgPxfNmWV4jFVhcqLXfXpDG9PQmL7-ZZAahW4InhGD5mKzWrxOKKZswGoSRFGdoRCSjfsBZdH6iL9FV02wx5oJIOkJJbPd-oVuozMF7ykuomtxWuvDmP7X-056uMm9a2VIXHQEtmLb_QlnbPTjIvDWYnQNvaRNvBe3eus9rdLHRRQM3xztG78_zZLbw47eX5Wwa-4YK3PrEhEGGJYgs5MKkggqmTZpCSrLAaBZiQljGdUQM6BBzY7KNYSTEWIDhQUjYGD0MuR-6ULXLS-0OyupcLaax6n846IpyJr979n5ga2e_dtC0amt3rmvaKCoiziPWsR1FBso42zQONv-xBKt-aNUPrfqh1XHoznM3eHIAOOFxIInk7BcNqHlg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875573400</pqid></control><display><type>article</type><title>Low-latency Dimensional Expansion and Anomaly Detection empowered Secure IoT Network</title><source>IEEE Electronic Library (IEL)</source><creator>Shao, Wenhao ; Wei, Yanyan ; Rajapaksha, Praboda ; Li, Dun ; Luo, Zhigang ; Crespi, Noel</creator><creatorcontrib>Shao, Wenhao ; Wei, Yanyan ; Rajapaksha, Praboda ; Li, Dun ; Luo, Zhigang ; Crespi, Noel</creatorcontrib><description>The Internet of Things (IoT) consists of a myriad of smart devices and offers tremendous innovation opportunities in industry, homes, and businesses to enhance the productivity and the quality of life. However, ecosystem of infrastructures and the services associated with IoT devices have introduced a new set of vulnerabilities and threats, resulting in abnormal values of information collected by sensors, jeopardizing system security. To secure sensor networks, it must be possible to detect such anomalies or sequences of patterns in IoT devices that significantly deviate from normal behavior. To perform this task, this paper proposes a real-time streaming anomaly detection method based on a Bloom filter combined with hashing. This method expands the data dimensions through a hashing algorithm, and then adopts competitive learning (Winner-Take-All) to build a multi-layer Bloom Filter anomaly detection model. The feasibility of the proposed algorithm is verified theoretically using two datasets, KDD (to detect anomalies at the TCP/IP network level) and Credit (to detect anomalies during credit card transactions). The simulation results show that the proposed in this paper can effectively identify anomalies in the simulation data streams, with almost 95% accuracy for both datasets.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2023.3246798</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anomalies ; Anomaly detection ; Bloom Filter ; Computer Science ; Cybersecurity ; Data models ; Data transmission ; Datasets ; Filtering algorithms ; Filtering theory ; Hash based algorithms ; Internet of Things ; Multilayers ; Network latency ; Security ; Sensor Devices ; Sensors ; System Security</subject><ispartof>IEEE eTransactions on network and service management, 2023-09, Vol.20 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c280t-1c64d09e8d658cb8283acbbeb1d4ca360113d5a71cea605ccdfc316008ec54613</cites><orcidid>0000-0003-2962-192X ; 0000-0002-1986-7144 ; 0000-0002-7552-201X ; 0000-0001-6990-5893 ; 0000-0002-6747-6367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10049195$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10049195$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-04005539$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Wenhao</creatorcontrib><creatorcontrib>Wei, Yanyan</creatorcontrib><creatorcontrib>Rajapaksha, Praboda</creatorcontrib><creatorcontrib>Li, Dun</creatorcontrib><creatorcontrib>Luo, Zhigang</creatorcontrib><creatorcontrib>Crespi, Noel</creatorcontrib><title>Low-latency Dimensional Expansion and Anomaly Detection empowered Secure IoT Network</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>The Internet of Things (IoT) consists of a myriad of smart devices and offers tremendous innovation opportunities in industry, homes, and businesses to enhance the productivity and the quality of life. However, ecosystem of infrastructures and the services associated with IoT devices have introduced a new set of vulnerabilities and threats, resulting in abnormal values of information collected by sensors, jeopardizing system security. To secure sensor networks, it must be possible to detect such anomalies or sequences of patterns in IoT devices that significantly deviate from normal behavior. To perform this task, this paper proposes a real-time streaming anomaly detection method based on a Bloom filter combined with hashing. This method expands the data dimensions through a hashing algorithm, and then adopts competitive learning (Winner-Take-All) to build a multi-layer Bloom Filter anomaly detection model. The feasibility of the proposed algorithm is verified theoretically using two datasets, KDD (to detect anomalies at the TCP/IP network level) and Credit (to detect anomalies during credit card transactions). The simulation results show that the proposed in this paper can effectively identify anomalies in the simulation data streams, with almost 95% accuracy for both datasets.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Bloom Filter</subject><subject>Computer Science</subject><subject>Cybersecurity</subject><subject>Data models</subject><subject>Data transmission</subject><subject>Datasets</subject><subject>Filtering algorithms</subject><subject>Filtering theory</subject><subject>Hash based algorithms</subject><subject>Internet of Things</subject><subject>Multilayers</subject><subject>Network latency</subject><subject>Security</subject><subject>Sensor Devices</subject><subject>Sensors</subject><subject>System Security</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Pg0AUxDdGE2v1A5h4IPHkgbp_WNg9NrXaJlgPxfNmWV4jFVhcqLXfXpDG9PQmL7-ZZAahW4InhGD5mKzWrxOKKZswGoSRFGdoRCSjfsBZdH6iL9FV02wx5oJIOkJJbPd-oVuozMF7ykuomtxWuvDmP7X-056uMm9a2VIXHQEtmLb_QlnbPTjIvDWYnQNvaRNvBe3eus9rdLHRRQM3xztG78_zZLbw47eX5Wwa-4YK3PrEhEGGJYgs5MKkggqmTZpCSrLAaBZiQljGdUQM6BBzY7KNYSTEWIDhQUjYGD0MuR-6ULXLS-0OyupcLaax6n846IpyJr979n5ga2e_dtC0amt3rmvaKCoiziPWsR1FBso42zQONv-xBKt-aNUPrfqh1XHoznM3eHIAOOFxIInk7BcNqHlg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Shao, Wenhao</creator><creator>Wei, Yanyan</creator><creator>Rajapaksha, Praboda</creator><creator>Li, Dun</creator><creator>Luo, Zhigang</creator><creator>Crespi, Noel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2962-192X</orcidid><orcidid>https://orcid.org/0000-0002-1986-7144</orcidid><orcidid>https://orcid.org/0000-0002-7552-201X</orcidid><orcidid>https://orcid.org/0000-0001-6990-5893</orcidid><orcidid>https://orcid.org/0000-0002-6747-6367</orcidid></search><sort><creationdate>20230901</creationdate><title>Low-latency Dimensional Expansion and Anomaly Detection empowered Secure IoT Network</title><author>Shao, Wenhao ; Wei, Yanyan ; Rajapaksha, Praboda ; Li, Dun ; Luo, Zhigang ; Crespi, Noel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-1c64d09e8d658cb8283acbbeb1d4ca360113d5a71cea605ccdfc316008ec54613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Bloom Filter</topic><topic>Computer Science</topic><topic>Cybersecurity</topic><topic>Data models</topic><topic>Data transmission</topic><topic>Datasets</topic><topic>Filtering algorithms</topic><topic>Filtering theory</topic><topic>Hash based algorithms</topic><topic>Internet of Things</topic><topic>Multilayers</topic><topic>Network latency</topic><topic>Security</topic><topic>Sensor Devices</topic><topic>Sensors</topic><topic>System Security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Wenhao</creatorcontrib><creatorcontrib>Wei, Yanyan</creatorcontrib><creatorcontrib>Rajapaksha, Praboda</creatorcontrib><creatorcontrib>Li, Dun</creatorcontrib><creatorcontrib>Luo, Zhigang</creatorcontrib><creatorcontrib>Crespi, Noel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shao, Wenhao</au><au>Wei, Yanyan</au><au>Rajapaksha, Praboda</au><au>Li, Dun</au><au>Luo, Zhigang</au><au>Crespi, Noel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-latency Dimensional Expansion and Anomaly Detection empowered Secure IoT Network</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>20</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>The Internet of Things (IoT) consists of a myriad of smart devices and offers tremendous innovation opportunities in industry, homes, and businesses to enhance the productivity and the quality of life. However, ecosystem of infrastructures and the services associated with IoT devices have introduced a new set of vulnerabilities and threats, resulting in abnormal values of information collected by sensors, jeopardizing system security. To secure sensor networks, it must be possible to detect such anomalies or sequences of patterns in IoT devices that significantly deviate from normal behavior. To perform this task, this paper proposes a real-time streaming anomaly detection method based on a Bloom filter combined with hashing. This method expands the data dimensions through a hashing algorithm, and then adopts competitive learning (Winner-Take-All) to build a multi-layer Bloom Filter anomaly detection model. The feasibility of the proposed algorithm is verified theoretically using two datasets, KDD (to detect anomalies at the TCP/IP network level) and Credit (to detect anomalies during credit card transactions). The simulation results show that the proposed in this paper can effectively identify anomalies in the simulation data streams, with almost 95% accuracy for both datasets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2023.3246798</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2962-192X</orcidid><orcidid>https://orcid.org/0000-0002-1986-7144</orcidid><orcidid>https://orcid.org/0000-0002-7552-201X</orcidid><orcidid>https://orcid.org/0000-0001-6990-5893</orcidid><orcidid>https://orcid.org/0000-0002-6747-6367</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2023-09, Vol.20 (3), p.1-1 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_ieee_primary_10049195 |
source | IEEE Electronic Library (IEL) |
subjects | Anomalies Anomaly detection Bloom Filter Computer Science Cybersecurity Data models Data transmission Datasets Filtering algorithms Filtering theory Hash based algorithms Internet of Things Multilayers Network latency Security Sensor Devices Sensors System Security |
title | Low-latency Dimensional Expansion and Anomaly Detection empowered Secure IoT Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-latency%20Dimensional%20Expansion%20and%20Anomaly%20Detection%20empowered%20Secure%20IoT%20Network&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Shao,%20Wenhao&rft.date=2023-09-01&rft.volume=20&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2023.3246798&rft_dat=%3Cproquest_RIE%3E2875573400%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875573400&rft_id=info:pmid/&rft_ieee_id=10049195&rfr_iscdi=true |