A Fuzzy Neural Network Controller Using Compromise Features for Timeliness Problem

When the control rules of traditional fuzzy controller are determined, it comes to be time-consuming and laborious to adjust for different usage conditions. Therefore, the timeliness cannot be guaranteed to solve the timeliness problem, and a fuzzy controller with modifiable factors is designed. Whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Wang, Lei, Dong, Liangxin, Huangfu, Ziwei, Chen, Yiyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Wang, Lei
Dong, Liangxin
Huangfu, Ziwei
Chen, Yiyang
description When the control rules of traditional fuzzy controller are determined, it comes to be time-consuming and laborious to adjust for different usage conditions. Therefore, the timeliness cannot be guaranteed to solve the timeliness problem, and a fuzzy controller with modifiable factors is designed. While the entire control table is affected by the modifiable factors selection table, all previous control parameters need to be reset. In light of above problems, this paper firstly proposes new fuzzy controller design methods, which retain strengths of traditional controller and controller with modifiable factors. It effectively overcomes the shortcomings of the two controllers mentioned above, and only need to adjust the compromise factor for different working conditions of proposed controller, which is more convenient and efficient. Secondly, the proposed fuzzy controller also adopts a four-layer neural network to optimize the control rules of compromise to improve control precision and system robustness. Finally, the excellent characteristics of proposed controller are verified through simulation research, and the simulation result proves the proposed fuzzy controller has the advantages of higher control precision and smaller transition.
doi_str_mv 10.1109/ACCESS.2023.3246265
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10047863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10047863</ieee_id><doaj_id>oai_doaj_org_article_2d9029999d3d4fa09b682a92e9156470</doaj_id><sourcerecordid>2779671403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-a5455208504db39abc05bcdfa1089171a2b36e5e9c7b1abcd3a72b8ca42a5fe33</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJg0f4CPQQ8p-5Hdjd7LKHVQlGx7XnZJJOSmmTrboK0v96tKdK5zPBm3psZXhA8YDTBGMnnaZrOVqsJQYROKIk54ewqGBHMZUQZ5dcX9W0wdm6HfCQeYmIUfE7DeX88HsI36K2ufep-jP0KU9N21tQ12HDjqnbrgWZvTVM5COegu96CC0tjw3XVQF214Fz4YU1WQ3Mf3JS6djA-57tgM5-t09do-f6ySKfLKKdUdpFmMWMEJQzFRUalznLEsrwoNUaJxAJrklEODGQuMuy7BdWCZEmuY6JZCZTeBYtBtzB6p_a2arQ9KKMr9QcYu1XadlVegyKFRET6KGgRlxrJjCdESwISMx4L5LWeBi3_43cPrlM709vWn6-IEJILHKPTRjpM5dY4Z6H834qROnmhBi_UyQt19sKzHgdWBQAXDBSLhFP6C1Q4hNY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779671403</pqid></control><display><type>article</type><title>A Fuzzy Neural Network Controller Using Compromise Features for Timeliness Problem</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Lei ; Dong, Liangxin ; Huangfu, Ziwei ; Chen, Yiyang</creator><creatorcontrib>Wang, Lei ; Dong, Liangxin ; Huangfu, Ziwei ; Chen, Yiyang</creatorcontrib><description>When the control rules of traditional fuzzy controller are determined, it comes to be time-consuming and laborious to adjust for different usage conditions. Therefore, the timeliness cannot be guaranteed to solve the timeliness problem, and a fuzzy controller with modifiable factors is designed. While the entire control table is affected by the modifiable factors selection table, all previous control parameters need to be reset. In light of above problems, this paper firstly proposes new fuzzy controller design methods, which retain strengths of traditional controller and controller with modifiable factors. It effectively overcomes the shortcomings of the two controllers mentioned above, and only need to adjust the compromise factor for different working conditions of proposed controller, which is more convenient and efficient. Secondly, the proposed fuzzy controller also adopts a four-layer neural network to optimize the control rules of compromise to improve control precision and system robustness. Finally, the excellent characteristics of proposed controller are verified through simulation research, and the simulation result proves the proposed fuzzy controller has the advantages of higher control precision and smaller transition.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3246265</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biological neural networks ; compromise features ; control precision ; Control systems design ; Controllers ; Design methodology ; Fuzzy control ; Fuzzy controller ; Fuzzy logic ; neural network ; Neural networks ; Neurons ; Optimization ; Parameter modification ; Robust control ; Robustness ; Training</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-a5455208504db39abc05bcdfa1089171a2b36e5e9c7b1abcd3a72b8ca42a5fe33</citedby><cites>FETCH-LOGICAL-c339t-a5455208504db39abc05bcdfa1089171a2b36e5e9c7b1abcd3a72b8ca42a5fe33</cites><orcidid>0000-0001-9960-9040 ; 0000-0002-1141-0481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10047863$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Dong, Liangxin</creatorcontrib><creatorcontrib>Huangfu, Ziwei</creatorcontrib><creatorcontrib>Chen, Yiyang</creatorcontrib><title>A Fuzzy Neural Network Controller Using Compromise Features for Timeliness Problem</title><title>IEEE access</title><addtitle>Access</addtitle><description>When the control rules of traditional fuzzy controller are determined, it comes to be time-consuming and laborious to adjust for different usage conditions. Therefore, the timeliness cannot be guaranteed to solve the timeliness problem, and a fuzzy controller with modifiable factors is designed. While the entire control table is affected by the modifiable factors selection table, all previous control parameters need to be reset. In light of above problems, this paper firstly proposes new fuzzy controller design methods, which retain strengths of traditional controller and controller with modifiable factors. It effectively overcomes the shortcomings of the two controllers mentioned above, and only need to adjust the compromise factor for different working conditions of proposed controller, which is more convenient and efficient. Secondly, the proposed fuzzy controller also adopts a four-layer neural network to optimize the control rules of compromise to improve control precision and system robustness. Finally, the excellent characteristics of proposed controller are verified through simulation research, and the simulation result proves the proposed fuzzy controller has the advantages of higher control precision and smaller transition.</description><subject>Biological neural networks</subject><subject>compromise features</subject><subject>control precision</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Design methodology</subject><subject>Fuzzy control</subject><subject>Fuzzy controller</subject><subject>Fuzzy logic</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optimization</subject><subject>Parameter modification</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaJg0f4CPQQ8p-5Hdjd7LKHVQlGx7XnZJJOSmmTrboK0v96tKdK5zPBm3psZXhA8YDTBGMnnaZrOVqsJQYROKIk54ewqGBHMZUQZ5dcX9W0wdm6HfCQeYmIUfE7DeX88HsI36K2ufep-jP0KU9N21tQ12HDjqnbrgWZvTVM5COegu96CC0tjw3XVQF214Fz4YU1WQ3Mf3JS6djA-57tgM5-t09do-f6ySKfLKKdUdpFmMWMEJQzFRUalznLEsrwoNUaJxAJrklEODGQuMuy7BdWCZEmuY6JZCZTeBYtBtzB6p_a2arQ9KKMr9QcYu1XadlVegyKFRET6KGgRlxrJjCdESwISMx4L5LWeBi3_43cPrlM709vWn6-IEJILHKPTRjpM5dY4Z6H834qROnmhBi_UyQt19sKzHgdWBQAXDBSLhFP6C1Q4hNY</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wang, Lei</creator><creator>Dong, Liangxin</creator><creator>Huangfu, Ziwei</creator><creator>Chen, Yiyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9960-9040</orcidid><orcidid>https://orcid.org/0000-0002-1141-0481</orcidid></search><sort><creationdate>20230101</creationdate><title>A Fuzzy Neural Network Controller Using Compromise Features for Timeliness Problem</title><author>Wang, Lei ; Dong, Liangxin ; Huangfu, Ziwei ; Chen, Yiyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-a5455208504db39abc05bcdfa1089171a2b36e5e9c7b1abcd3a72b8ca42a5fe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological neural networks</topic><topic>compromise features</topic><topic>control precision</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Design methodology</topic><topic>Fuzzy control</topic><topic>Fuzzy controller</topic><topic>Fuzzy logic</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optimization</topic><topic>Parameter modification</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Dong, Liangxin</creatorcontrib><creatorcontrib>Huangfu, Ziwei</creatorcontrib><creatorcontrib>Chen, Yiyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lei</au><au>Dong, Liangxin</au><au>Huangfu, Ziwei</au><au>Chen, Yiyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fuzzy Neural Network Controller Using Compromise Features for Timeliness Problem</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>When the control rules of traditional fuzzy controller are determined, it comes to be time-consuming and laborious to adjust for different usage conditions. Therefore, the timeliness cannot be guaranteed to solve the timeliness problem, and a fuzzy controller with modifiable factors is designed. While the entire control table is affected by the modifiable factors selection table, all previous control parameters need to be reset. In light of above problems, this paper firstly proposes new fuzzy controller design methods, which retain strengths of traditional controller and controller with modifiable factors. It effectively overcomes the shortcomings of the two controllers mentioned above, and only need to adjust the compromise factor for different working conditions of proposed controller, which is more convenient and efficient. Secondly, the proposed fuzzy controller also adopts a four-layer neural network to optimize the control rules of compromise to improve control precision and system robustness. Finally, the excellent characteristics of proposed controller are verified through simulation research, and the simulation result proves the proposed fuzzy controller has the advantages of higher control precision and smaller transition.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3246265</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9960-9040</orcidid><orcidid>https://orcid.org/0000-0002-1141-0481</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10047863
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Biological neural networks
compromise features
control precision
Control systems design
Controllers
Design methodology
Fuzzy control
Fuzzy controller
Fuzzy logic
neural network
Neural networks
Neurons
Optimization
Parameter modification
Robust control
Robustness
Training
title A Fuzzy Neural Network Controller Using Compromise Features for Timeliness Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fuzzy%20Neural%20Network%20Controller%20Using%20Compromise%20Features%20for%20Timeliness%20Problem&rft.jtitle=IEEE%20access&rft.au=Wang,%20Lei&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3246265&rft_dat=%3Cproquest_ieee_%3E2779671403%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779671403&rft_id=info:pmid/&rft_ieee_id=10047863&rft_doaj_id=oai_doaj_org_article_2d9029999d3d4fa09b682a92e9156470&rfr_iscdi=true