A Fuzzy Neural Network Controller Using Compromise Features for Timeliness Problem
When the control rules of traditional fuzzy controller are determined, it comes to be time-consuming and laborious to adjust for different usage conditions. Therefore, the timeliness cannot be guaranteed to solve the timeliness problem, and a fuzzy controller with modifiable factors is designed. Whi...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Wang, Lei Dong, Liangxin Huangfu, Ziwei Chen, Yiyang |
description | When the control rules of traditional fuzzy controller are determined, it comes to be time-consuming and laborious to adjust for different usage conditions. Therefore, the timeliness cannot be guaranteed to solve the timeliness problem, and a fuzzy controller with modifiable factors is designed. While the entire control table is affected by the modifiable factors selection table, all previous control parameters need to be reset. In light of above problems, this paper firstly proposes new fuzzy controller design methods, which retain strengths of traditional controller and controller with modifiable factors. It effectively overcomes the shortcomings of the two controllers mentioned above, and only need to adjust the compromise factor for different working conditions of proposed controller, which is more convenient and efficient. Secondly, the proposed fuzzy controller also adopts a four-layer neural network to optimize the control rules of compromise to improve control precision and system robustness. Finally, the excellent characteristics of proposed controller are verified through simulation research, and the simulation result proves the proposed fuzzy controller has the advantages of higher control precision and smaller transition. |
doi_str_mv | 10.1109/ACCESS.2023.3246265 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10047863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10047863</ieee_id><doaj_id>oai_doaj_org_article_2d9029999d3d4fa09b682a92e9156470</doaj_id><sourcerecordid>2779671403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-a5455208504db39abc05bcdfa1089171a2b36e5e9c7b1abcd3a72b8ca42a5fe33</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJg0f4CPQQ8p-5Hdjd7LKHVQlGx7XnZJJOSmmTrboK0v96tKdK5zPBm3psZXhA8YDTBGMnnaZrOVqsJQYROKIk54ewqGBHMZUQZ5dcX9W0wdm6HfCQeYmIUfE7DeX88HsI36K2ufep-jP0KU9N21tQ12HDjqnbrgWZvTVM5COegu96CC0tjw3XVQF214Fz4YU1WQ3Mf3JS6djA-57tgM5-t09do-f6ySKfLKKdUdpFmMWMEJQzFRUalznLEsrwoNUaJxAJrklEODGQuMuy7BdWCZEmuY6JZCZTeBYtBtzB6p_a2arQ9KKMr9QcYu1XadlVegyKFRET6KGgRlxrJjCdESwISMx4L5LWeBi3_43cPrlM709vWn6-IEJILHKPTRjpM5dY4Z6H834qROnmhBi_UyQt19sKzHgdWBQAXDBSLhFP6C1Q4hNY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779671403</pqid></control><display><type>article</type><title>A Fuzzy Neural Network Controller Using Compromise Features for Timeliness Problem</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Lei ; Dong, Liangxin ; Huangfu, Ziwei ; Chen, Yiyang</creator><creatorcontrib>Wang, Lei ; Dong, Liangxin ; Huangfu, Ziwei ; Chen, Yiyang</creatorcontrib><description>When the control rules of traditional fuzzy controller are determined, it comes to be time-consuming and laborious to adjust for different usage conditions. Therefore, the timeliness cannot be guaranteed to solve the timeliness problem, and a fuzzy controller with modifiable factors is designed. While the entire control table is affected by the modifiable factors selection table, all previous control parameters need to be reset. In light of above problems, this paper firstly proposes new fuzzy controller design methods, which retain strengths of traditional controller and controller with modifiable factors. It effectively overcomes the shortcomings of the two controllers mentioned above, and only need to adjust the compromise factor for different working conditions of proposed controller, which is more convenient and efficient. Secondly, the proposed fuzzy controller also adopts a four-layer neural network to optimize the control rules of compromise to improve control precision and system robustness. Finally, the excellent characteristics of proposed controller are verified through simulation research, and the simulation result proves the proposed fuzzy controller has the advantages of higher control precision and smaller transition.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3246265</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biological neural networks ; compromise features ; control precision ; Control systems design ; Controllers ; Design methodology ; Fuzzy control ; Fuzzy controller ; Fuzzy logic ; neural network ; Neural networks ; Neurons ; Optimization ; Parameter modification ; Robust control ; Robustness ; Training</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-a5455208504db39abc05bcdfa1089171a2b36e5e9c7b1abcd3a72b8ca42a5fe33</citedby><cites>FETCH-LOGICAL-c339t-a5455208504db39abc05bcdfa1089171a2b36e5e9c7b1abcd3a72b8ca42a5fe33</cites><orcidid>0000-0001-9960-9040 ; 0000-0002-1141-0481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10047863$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Dong, Liangxin</creatorcontrib><creatorcontrib>Huangfu, Ziwei</creatorcontrib><creatorcontrib>Chen, Yiyang</creatorcontrib><title>A Fuzzy Neural Network Controller Using Compromise Features for Timeliness Problem</title><title>IEEE access</title><addtitle>Access</addtitle><description>When the control rules of traditional fuzzy controller are determined, it comes to be time-consuming and laborious to adjust for different usage conditions. Therefore, the timeliness cannot be guaranteed to solve the timeliness problem, and a fuzzy controller with modifiable factors is designed. While the entire control table is affected by the modifiable factors selection table, all previous control parameters need to be reset. In light of above problems, this paper firstly proposes new fuzzy controller design methods, which retain strengths of traditional controller and controller with modifiable factors. It effectively overcomes the shortcomings of the two controllers mentioned above, and only need to adjust the compromise factor for different working conditions of proposed controller, which is more convenient and efficient. Secondly, the proposed fuzzy controller also adopts a four-layer neural network to optimize the control rules of compromise to improve control precision and system robustness. Finally, the excellent characteristics of proposed controller are verified through simulation research, and the simulation result proves the proposed fuzzy controller has the advantages of higher control precision and smaller transition.</description><subject>Biological neural networks</subject><subject>compromise features</subject><subject>control precision</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Design methodology</subject><subject>Fuzzy control</subject><subject>Fuzzy controller</subject><subject>Fuzzy logic</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optimization</subject><subject>Parameter modification</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaJg0f4CPQQ8p-5Hdjd7LKHVQlGx7XnZJJOSmmTrboK0v96tKdK5zPBm3psZXhA8YDTBGMnnaZrOVqsJQYROKIk54ewqGBHMZUQZ5dcX9W0wdm6HfCQeYmIUfE7DeX88HsI36K2ufep-jP0KU9N21tQ12HDjqnbrgWZvTVM5COegu96CC0tjw3XVQF214Fz4YU1WQ3Mf3JS6djA-57tgM5-t09do-f6ySKfLKKdUdpFmMWMEJQzFRUalznLEsrwoNUaJxAJrklEODGQuMuy7BdWCZEmuY6JZCZTeBYtBtzB6p_a2arQ9KKMr9QcYu1XadlVegyKFRET6KGgRlxrJjCdESwISMx4L5LWeBi3_43cPrlM709vWn6-IEJILHKPTRjpM5dY4Z6H834qROnmhBi_UyQt19sKzHgdWBQAXDBSLhFP6C1Q4hNY</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wang, Lei</creator><creator>Dong, Liangxin</creator><creator>Huangfu, Ziwei</creator><creator>Chen, Yiyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9960-9040</orcidid><orcidid>https://orcid.org/0000-0002-1141-0481</orcidid></search><sort><creationdate>20230101</creationdate><title>A Fuzzy Neural Network Controller Using Compromise Features for Timeliness Problem</title><author>Wang, Lei ; Dong, Liangxin ; Huangfu, Ziwei ; Chen, Yiyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-a5455208504db39abc05bcdfa1089171a2b36e5e9c7b1abcd3a72b8ca42a5fe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological neural networks</topic><topic>compromise features</topic><topic>control precision</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Design methodology</topic><topic>Fuzzy control</topic><topic>Fuzzy controller</topic><topic>Fuzzy logic</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optimization</topic><topic>Parameter modification</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Dong, Liangxin</creatorcontrib><creatorcontrib>Huangfu, Ziwei</creatorcontrib><creatorcontrib>Chen, Yiyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lei</au><au>Dong, Liangxin</au><au>Huangfu, Ziwei</au><au>Chen, Yiyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fuzzy Neural Network Controller Using Compromise Features for Timeliness Problem</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>When the control rules of traditional fuzzy controller are determined, it comes to be time-consuming and laborious to adjust for different usage conditions. Therefore, the timeliness cannot be guaranteed to solve the timeliness problem, and a fuzzy controller with modifiable factors is designed. While the entire control table is affected by the modifiable factors selection table, all previous control parameters need to be reset. In light of above problems, this paper firstly proposes new fuzzy controller design methods, which retain strengths of traditional controller and controller with modifiable factors. It effectively overcomes the shortcomings of the two controllers mentioned above, and only need to adjust the compromise factor for different working conditions of proposed controller, which is more convenient and efficient. Secondly, the proposed fuzzy controller also adopts a four-layer neural network to optimize the control rules of compromise to improve control precision and system robustness. Finally, the excellent characteristics of proposed controller are verified through simulation research, and the simulation result proves the proposed fuzzy controller has the advantages of higher control precision and smaller transition.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3246265</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9960-9040</orcidid><orcidid>https://orcid.org/0000-0002-1141-0481</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10047863 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Biological neural networks compromise features control precision Control systems design Controllers Design methodology Fuzzy control Fuzzy controller Fuzzy logic neural network Neural networks Neurons Optimization Parameter modification Robust control Robustness Training |
title | A Fuzzy Neural Network Controller Using Compromise Features for Timeliness Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fuzzy%20Neural%20Network%20Controller%20Using%20Compromise%20Features%20for%20Timeliness%20Problem&rft.jtitle=IEEE%20access&rft.au=Wang,%20Lei&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3246265&rft_dat=%3Cproquest_ieee_%3E2779671403%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779671403&rft_id=info:pmid/&rft_ieee_id=10047863&rft_doaj_id=oai_doaj_org_article_2d9029999d3d4fa09b682a92e9156470&rfr_iscdi=true |