Automatic Modulation Classification In Impulsive Noise: Hyperbolic-tangent Cyclic Spectrum and Multi-branch Attention Shuffle Network
Automatic modulation classification plays an essential role in cognitive communication systems. Traditional automatic modulation classification approaches are primarily developed under Gaussian noise assumptions. Nevertheless, recent empirical studies show that the impulsive noise has emerged in num...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2023-02, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | |
creator | Ma, Jitong Hu, Mutian Wang, Tianyu Yang, Zhengyan Wan, Liangtian Qiu, Tianshuang |
description | Automatic modulation classification plays an essential role in cognitive communication systems. Traditional automatic modulation classification approaches are primarily developed under Gaussian noise assumptions. Nevertheless, recent empirical studies show that the impulsive noise has emerged in numerous wireless communication systems. The bursty nature of impulsive noise fundamentally challenges the applicability of traditional automatic modulation classification approaches. In order to accurately identify the modulation schemes in impulsive noise environment, in this paper, we propose a novel modulation classification approach through using hyperbolic-tangent cyclic spectrum and multi-branch attention shuffle neural networks. First, based on the designed hyperbolic-tangent autocorrelation function, hyperbolic-tangent cyclic spectrum is proposed to effectively suppress impulsive noise and extract the discriminating features. Then, based on the hyperbolic-tangent cyclic spectrum, a novel deep shuffle neural network is proposed as a classifier to perform the modulation classification through multi-branch attention mechanism to reweight all features. Both numerical and real-data experimental results demonstrate that the proposed algorithm can correctly classify modulation schemes with high accuracy and robustness in impulsive noise. |
doi_str_mv | 10.1109/TIM.2023.3244798 |
format | Article |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10044131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10044131</ieee_id><sourcerecordid>10044131</sourcerecordid><originalsourceid>FETCH-ieee_primary_100441313</originalsourceid><addsrcrecordid>eNqFjD1vwjAYhD1QCfqxd2DwH0j6OjGEdENRKxjSBXZkzJticOzIH63yA_q_66rdK5109-hOR8gjg5wxqJ_22zYvoCjzsuC8qlcTMgNgq6zmi-WU3Hp_AYBqyasZ-VrHYHsRlKStPUWdkjW00cJ71Sn5i9ukfojaqw-kb1Z5fKabcUB3tFrJLAjzjibQZpQJ6W5AGVzsqTAn2kYdVHZ0wsgzXYeQdj-Pu3PsOp3OMHxad70nN53QHh_-_I7MX1_2zSZTiHgYnOqFGw8MgHNWsvKf-hsqnVId</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automatic Modulation Classification In Impulsive Noise: Hyperbolic-tangent Cyclic Spectrum and Multi-branch Attention Shuffle Network</title><source>IEEE Electronic Library (IEL)</source><creator>Ma, Jitong ; Hu, Mutian ; Wang, Tianyu ; Yang, Zhengyan ; Wan, Liangtian ; Qiu, Tianshuang</creator><creatorcontrib>Ma, Jitong ; Hu, Mutian ; Wang, Tianyu ; Yang, Zhengyan ; Wan, Liangtian ; Qiu, Tianshuang</creatorcontrib><description>Automatic modulation classification plays an essential role in cognitive communication systems. Traditional automatic modulation classification approaches are primarily developed under Gaussian noise assumptions. Nevertheless, recent empirical studies show that the impulsive noise has emerged in numerous wireless communication systems. The bursty nature of impulsive noise fundamentally challenges the applicability of traditional automatic modulation classification approaches. In order to accurately identify the modulation schemes in impulsive noise environment, in this paper, we propose a novel modulation classification approach through using hyperbolic-tangent cyclic spectrum and multi-branch attention shuffle neural networks. First, based on the designed hyperbolic-tangent autocorrelation function, hyperbolic-tangent cyclic spectrum is proposed to effectively suppress impulsive noise and extract the discriminating features. Then, based on the hyperbolic-tangent cyclic spectrum, a novel deep shuffle neural network is proposed as a classifier to perform the modulation classification through multi-branch attention mechanism to reweight all features. Both numerical and real-data experimental results demonstrate that the proposed algorithm can correctly classify modulation schemes with high accuracy and robustness in impulsive noise.</description><identifier>ISSN: 0018-9456</identifier><identifier>DOI: 10.1109/TIM.2023.3244798</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic modulation classification ; Deep learning ; Electromagnetics ; Feature extraction ; Gaussian noise ; hyperbolic-tangent cyclic spectrum ; impulsive noise ; Interference ; Modulation ; multi-branch attention mechanism ; shuffle network ; Wireless sensor networks</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-02, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9244-0035 ; 0000-0001-6349-2397 ; 0000-0002-3501-4213 ; 0000-0002-5596-2923 ; 0000-0003-0574-8360 ; 0000-0002-1992-1120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10044131$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10044131$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ma, Jitong</creatorcontrib><creatorcontrib>Hu, Mutian</creatorcontrib><creatorcontrib>Wang, Tianyu</creatorcontrib><creatorcontrib>Yang, Zhengyan</creatorcontrib><creatorcontrib>Wan, Liangtian</creatorcontrib><creatorcontrib>Qiu, Tianshuang</creatorcontrib><title>Automatic Modulation Classification In Impulsive Noise: Hyperbolic-tangent Cyclic Spectrum and Multi-branch Attention Shuffle Network</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Automatic modulation classification plays an essential role in cognitive communication systems. Traditional automatic modulation classification approaches are primarily developed under Gaussian noise assumptions. Nevertheless, recent empirical studies show that the impulsive noise has emerged in numerous wireless communication systems. The bursty nature of impulsive noise fundamentally challenges the applicability of traditional automatic modulation classification approaches. In order to accurately identify the modulation schemes in impulsive noise environment, in this paper, we propose a novel modulation classification approach through using hyperbolic-tangent cyclic spectrum and multi-branch attention shuffle neural networks. First, based on the designed hyperbolic-tangent autocorrelation function, hyperbolic-tangent cyclic spectrum is proposed to effectively suppress impulsive noise and extract the discriminating features. Then, based on the hyperbolic-tangent cyclic spectrum, a novel deep shuffle neural network is proposed as a classifier to perform the modulation classification through multi-branch attention mechanism to reweight all features. Both numerical and real-data experimental results demonstrate that the proposed algorithm can correctly classify modulation schemes with high accuracy and robustness in impulsive noise.</description><subject>Automatic modulation classification</subject><subject>Deep learning</subject><subject>Electromagnetics</subject><subject>Feature extraction</subject><subject>Gaussian noise</subject><subject>hyperbolic-tangent cyclic spectrum</subject><subject>impulsive noise</subject><subject>Interference</subject><subject>Modulation</subject><subject>multi-branch attention mechanism</subject><subject>shuffle network</subject><subject>Wireless sensor networks</subject><issn>0018-9456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFjD1vwjAYhD1QCfqxd2DwH0j6OjGEdENRKxjSBXZkzJticOzIH63yA_q_66rdK5109-hOR8gjg5wxqJ_22zYvoCjzsuC8qlcTMgNgq6zmi-WU3Hp_AYBqyasZ-VrHYHsRlKStPUWdkjW00cJ71Sn5i9ukfojaqw-kb1Z5fKabcUB3tFrJLAjzjibQZpQJ6W5AGVzsqTAn2kYdVHZ0wsgzXYeQdj-Pu3PsOp3OMHxad70nN53QHh_-_I7MX1_2zSZTiHgYnOqFGw8MgHNWsvKf-hsqnVId</recordid><startdate>20230213</startdate><enddate>20230213</enddate><creator>Ma, Jitong</creator><creator>Hu, Mutian</creator><creator>Wang, Tianyu</creator><creator>Yang, Zhengyan</creator><creator>Wan, Liangtian</creator><creator>Qiu, Tianshuang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0001-9244-0035</orcidid><orcidid>https://orcid.org/0000-0001-6349-2397</orcidid><orcidid>https://orcid.org/0000-0002-3501-4213</orcidid><orcidid>https://orcid.org/0000-0002-5596-2923</orcidid><orcidid>https://orcid.org/0000-0003-0574-8360</orcidid><orcidid>https://orcid.org/0000-0002-1992-1120</orcidid></search><sort><creationdate>20230213</creationdate><title>Automatic Modulation Classification In Impulsive Noise: Hyperbolic-tangent Cyclic Spectrum and Multi-branch Attention Shuffle Network</title><author>Ma, Jitong ; Hu, Mutian ; Wang, Tianyu ; Yang, Zhengyan ; Wan, Liangtian ; Qiu, Tianshuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_100441313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automatic modulation classification</topic><topic>Deep learning</topic><topic>Electromagnetics</topic><topic>Feature extraction</topic><topic>Gaussian noise</topic><topic>hyperbolic-tangent cyclic spectrum</topic><topic>impulsive noise</topic><topic>Interference</topic><topic>Modulation</topic><topic>multi-branch attention mechanism</topic><topic>shuffle network</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Jitong</creatorcontrib><creatorcontrib>Hu, Mutian</creatorcontrib><creatorcontrib>Wang, Tianyu</creatorcontrib><creatorcontrib>Yang, Zhengyan</creatorcontrib><creatorcontrib>Wan, Liangtian</creatorcontrib><creatorcontrib>Qiu, Tianshuang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Jitong</au><au>Hu, Mutian</au><au>Wang, Tianyu</au><au>Yang, Zhengyan</au><au>Wan, Liangtian</au><au>Qiu, Tianshuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Modulation Classification In Impulsive Noise: Hyperbolic-tangent Cyclic Spectrum and Multi-branch Attention Shuffle Network</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-02-13</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><coden>IEIMAO</coden><abstract>Automatic modulation classification plays an essential role in cognitive communication systems. Traditional automatic modulation classification approaches are primarily developed under Gaussian noise assumptions. Nevertheless, recent empirical studies show that the impulsive noise has emerged in numerous wireless communication systems. The bursty nature of impulsive noise fundamentally challenges the applicability of traditional automatic modulation classification approaches. In order to accurately identify the modulation schemes in impulsive noise environment, in this paper, we propose a novel modulation classification approach through using hyperbolic-tangent cyclic spectrum and multi-branch attention shuffle neural networks. First, based on the designed hyperbolic-tangent autocorrelation function, hyperbolic-tangent cyclic spectrum is proposed to effectively suppress impulsive noise and extract the discriminating features. Then, based on the hyperbolic-tangent cyclic spectrum, a novel deep shuffle neural network is proposed as a classifier to perform the modulation classification through multi-branch attention mechanism to reweight all features. Both numerical and real-data experimental results demonstrate that the proposed algorithm can correctly classify modulation schemes with high accuracy and robustness in impulsive noise.</abstract><pub>IEEE</pub><doi>10.1109/TIM.2023.3244798</doi><orcidid>https://orcid.org/0000-0001-9244-0035</orcidid><orcidid>https://orcid.org/0000-0001-6349-2397</orcidid><orcidid>https://orcid.org/0000-0002-3501-4213</orcidid><orcidid>https://orcid.org/0000-0002-5596-2923</orcidid><orcidid>https://orcid.org/0000-0003-0574-8360</orcidid><orcidid>https://orcid.org/0000-0002-1992-1120</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2023-02, p.1-1 |
issn | 0018-9456 |
language | eng |
recordid | cdi_ieee_primary_10044131 |
source | IEEE Electronic Library (IEL) |
subjects | Automatic modulation classification Deep learning Electromagnetics Feature extraction Gaussian noise hyperbolic-tangent cyclic spectrum impulsive noise Interference Modulation multi-branch attention mechanism shuffle network Wireless sensor networks |
title | Automatic Modulation Classification In Impulsive Noise: Hyperbolic-tangent Cyclic Spectrum and Multi-branch Attention Shuffle Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Modulation%20Classification%20In%20Impulsive%20Noise:%20Hyperbolic-tangent%20Cyclic%20Spectrum%20and%20Multi-branch%20Attention%20Shuffle%20Network&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Ma,%20Jitong&rft.date=2023-02-13&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3244798&rft_dat=%3Cieee_RIE%3E10044131%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10044131&rfr_iscdi=true |