Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016

The traditional deep learning-based bearing fault diagnosis approaches assume that the training and test data follow the same distribution. This assumption, however, is not always true for the bearing data collected in practical scenarios, leading to significant decline to fault diagnosis performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2023-01, Vol.72, p.1-1
Hauptverfasser: Chen, Xiaohan, Yang, Rui, Xue, Yihao, Huang, Mengjie, Ferrero, Roberto, Wang, Zidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!