Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016

The traditional deep learning-based bearing fault diagnosis approaches assume that the training and test data follow the same distribution. This assumption, however, is not always true for the bearing data collected in practical scenarios, leading to significant decline to fault diagnosis performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2023-01, Vol.72, p.1-1
Hauptverfasser: Chen, Xiaohan, Yang, Rui, Xue, Yihao, Huang, Mengjie, Ferrero, Roberto, Wang, Zidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 72
creator Chen, Xiaohan
Yang, Rui
Xue, Yihao
Huang, Mengjie
Ferrero, Roberto
Wang, Zidong
description The traditional deep learning-based bearing fault diagnosis approaches assume that the training and test data follow the same distribution. This assumption, however, is not always true for the bearing data collected in practical scenarios, leading to significant decline to fault diagnosis performance. In order to satisfy this assumption, the transfer learning concept is introduced in deep learning by transferring the knowledge learned from other data or models. Due to the excellent capability of feature learning and domain transfer, deep transfer learning methods have gained widespread attention in bearing fault diagnosis in recent years. This article presents a comprehensive review of the development of deep transfer learning-based bearing fault diagnosis approaches since 2016. In this review, a novel taxonomy of deep transfer learning-based bearing fault diagnosis methods is proposed from the perspective of target domain data properties divided by labels, machines, and faults. By covering the whole life cycle of deep transfer learning-based fault diagnosis and discussing the research challenges and opportunities, this review provides a systematic guideline for researchers and practitioners to efficiently identify suitable deep transfer learning models based on the actual problems encountered in bearing fault diagnosis.
doi_str_mv 10.1109/TIM.2023.3244237
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10042467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10042467</ieee_id><sourcerecordid>2780987101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b4cdd19425fefe2970da1ce0f77c5ec7409d5823262cbeff8cb9e3b04474fea53</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYjePXho4nlx-rHbrTcEURKMCeC56XanZAnsYrto-PcugYOneSd53pnkIeSewYAx0E_L6ceAAxcDwaXkQl2QHktTlegs45ekB8DyRMs0uyY3Ma4BQGVS9ch8jLijy2Dr6DHQGdpQV_WK-ibQl2455ondb1o6ruyqbmIVn-mQLg6xxa1tK0fn-FPhL11UtUPKgWW35MrbTcS78-yTr8nrcvSezD7fpqPhLHFCyDYppCtLpiVPPXrkWkFpmUPwSrkUnZKgyzTngmfcFeh97gqNogAplfRoU9Enj6e7u9B87zG2Zt3sQ929NFzloHPFgHUUnCgXmhgDerML1daGg2FgjuZMZ84czZmzua7ycKpUiPgPB8llpsQfif1o4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780987101</pqid></control><display><type>article</type><title>Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Xiaohan ; Yang, Rui ; Xue, Yihao ; Huang, Mengjie ; Ferrero, Roberto ; Wang, Zidong</creator><creatorcontrib>Chen, Xiaohan ; Yang, Rui ; Xue, Yihao ; Huang, Mengjie ; Ferrero, Roberto ; Wang, Zidong</creatorcontrib><description>The traditional deep learning-based bearing fault diagnosis approaches assume that the training and test data follow the same distribution. This assumption, however, is not always true for the bearing data collected in practical scenarios, leading to significant decline to fault diagnosis performance. In order to satisfy this assumption, the transfer learning concept is introduced in deep learning by transferring the knowledge learned from other data or models. Due to the excellent capability of feature learning and domain transfer, deep transfer learning methods have gained widespread attention in bearing fault diagnosis in recent years. This article presents a comprehensive review of the development of deep transfer learning-based bearing fault diagnosis approaches since 2016. In this review, a novel taxonomy of deep transfer learning-based bearing fault diagnosis methods is proposed from the perspective of target domain data properties divided by labels, machines, and faults. By covering the whole life cycle of deep transfer learning-based fault diagnosis and discussing the research challenges and opportunities, this review provides a systematic guideline for researchers and practitioners to efficiently identify suitable deep transfer learning models based on the actual problems encountered in bearing fault diagnosis.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3244237</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bearing fault ; Data models ; Deep learning ; deep transfer learning ; Domains ; Fault diagnosis ; Feature extraction ; Hidden Markov models ; Task analysis ; Taxonomy ; Transfer learning</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b4cdd19425fefe2970da1ce0f77c5ec7409d5823262cbeff8cb9e3b04474fea53</citedby><cites>FETCH-LOGICAL-c334t-b4cdd19425fefe2970da1ce0f77c5ec7409d5823262cbeff8cb9e3b04474fea53</cites><orcidid>0000-0002-5634-5476 ; 0000-0001-8163-8679 ; 0000-0002-3310-4864 ; 0000-0001-6462-4216 ; 0000-0001-7820-9021 ; 0000-0002-9576-7401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10042467$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10042467$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Xiaohan</creatorcontrib><creatorcontrib>Yang, Rui</creatorcontrib><creatorcontrib>Xue, Yihao</creatorcontrib><creatorcontrib>Huang, Mengjie</creatorcontrib><creatorcontrib>Ferrero, Roberto</creatorcontrib><creatorcontrib>Wang, Zidong</creatorcontrib><title>Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The traditional deep learning-based bearing fault diagnosis approaches assume that the training and test data follow the same distribution. This assumption, however, is not always true for the bearing data collected in practical scenarios, leading to significant decline to fault diagnosis performance. In order to satisfy this assumption, the transfer learning concept is introduced in deep learning by transferring the knowledge learned from other data or models. Due to the excellent capability of feature learning and domain transfer, deep transfer learning methods have gained widespread attention in bearing fault diagnosis in recent years. This article presents a comprehensive review of the development of deep transfer learning-based bearing fault diagnosis approaches since 2016. In this review, a novel taxonomy of deep transfer learning-based bearing fault diagnosis methods is proposed from the perspective of target domain data properties divided by labels, machines, and faults. By covering the whole life cycle of deep transfer learning-based fault diagnosis and discussing the research challenges and opportunities, this review provides a systematic guideline for researchers and practitioners to efficiently identify suitable deep transfer learning models based on the actual problems encountered in bearing fault diagnosis.</description><subject>Bearing fault</subject><subject>Data models</subject><subject>Deep learning</subject><subject>deep transfer learning</subject><subject>Domains</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Hidden Markov models</subject><subject>Task analysis</subject><subject>Taxonomy</subject><subject>Transfer learning</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYjePXho4nlx-rHbrTcEURKMCeC56XanZAnsYrto-PcugYOneSd53pnkIeSewYAx0E_L6ceAAxcDwaXkQl2QHktTlegs45ekB8DyRMs0uyY3Ma4BQGVS9ch8jLijy2Dr6DHQGdpQV_WK-ibQl2455ondb1o6ruyqbmIVn-mQLg6xxa1tK0fn-FPhL11UtUPKgWW35MrbTcS78-yTr8nrcvSezD7fpqPhLHFCyDYppCtLpiVPPXrkWkFpmUPwSrkUnZKgyzTngmfcFeh97gqNogAplfRoU9Enj6e7u9B87zG2Zt3sQ929NFzloHPFgHUUnCgXmhgDerML1daGg2FgjuZMZ84czZmzua7ycKpUiPgPB8llpsQfif1o4g</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Chen, Xiaohan</creator><creator>Yang, Rui</creator><creator>Xue, Yihao</creator><creator>Huang, Mengjie</creator><creator>Ferrero, Roberto</creator><creator>Wang, Zidong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5634-5476</orcidid><orcidid>https://orcid.org/0000-0001-8163-8679</orcidid><orcidid>https://orcid.org/0000-0002-3310-4864</orcidid><orcidid>https://orcid.org/0000-0001-6462-4216</orcidid><orcidid>https://orcid.org/0000-0001-7820-9021</orcidid><orcidid>https://orcid.org/0000-0002-9576-7401</orcidid></search><sort><creationdate>20230101</creationdate><title>Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016</title><author>Chen, Xiaohan ; Yang, Rui ; Xue, Yihao ; Huang, Mengjie ; Ferrero, Roberto ; Wang, Zidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b4cdd19425fefe2970da1ce0f77c5ec7409d5823262cbeff8cb9e3b04474fea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bearing fault</topic><topic>Data models</topic><topic>Deep learning</topic><topic>deep transfer learning</topic><topic>Domains</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Hidden Markov models</topic><topic>Task analysis</topic><topic>Taxonomy</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaohan</creatorcontrib><creatorcontrib>Yang, Rui</creatorcontrib><creatorcontrib>Xue, Yihao</creatorcontrib><creatorcontrib>Huang, Mengjie</creatorcontrib><creatorcontrib>Ferrero, Roberto</creatorcontrib><creatorcontrib>Wang, Zidong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xiaohan</au><au>Yang, Rui</au><au>Xue, Yihao</au><au>Huang, Mengjie</au><au>Ferrero, Roberto</au><au>Wang, Zidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The traditional deep learning-based bearing fault diagnosis approaches assume that the training and test data follow the same distribution. This assumption, however, is not always true for the bearing data collected in practical scenarios, leading to significant decline to fault diagnosis performance. In order to satisfy this assumption, the transfer learning concept is introduced in deep learning by transferring the knowledge learned from other data or models. Due to the excellent capability of feature learning and domain transfer, deep transfer learning methods have gained widespread attention in bearing fault diagnosis in recent years. This article presents a comprehensive review of the development of deep transfer learning-based bearing fault diagnosis approaches since 2016. In this review, a novel taxonomy of deep transfer learning-based bearing fault diagnosis methods is proposed from the perspective of target domain data properties divided by labels, machines, and faults. By covering the whole life cycle of deep transfer learning-based fault diagnosis and discussing the research challenges and opportunities, this review provides a systematic guideline for researchers and practitioners to efficiently identify suitable deep transfer learning models based on the actual problems encountered in bearing fault diagnosis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3244237</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5634-5476</orcidid><orcidid>https://orcid.org/0000-0001-8163-8679</orcidid><orcidid>https://orcid.org/0000-0002-3310-4864</orcidid><orcidid>https://orcid.org/0000-0001-6462-4216</orcidid><orcidid>https://orcid.org/0000-0001-7820-9021</orcidid><orcidid>https://orcid.org/0000-0002-9576-7401</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_10042467
source IEEE Electronic Library (IEL)
subjects Bearing fault
Data models
Deep learning
deep transfer learning
Domains
Fault diagnosis
Feature extraction
Hidden Markov models
Task analysis
Taxonomy
Transfer learning
title Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Transfer%20Learning%20for%20Bearing%20Fault%20Diagnosis:%20A%20Systematic%20Review%20Since%202016&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Chen,%20Xiaohan&rft.date=2023-01-01&rft.volume=72&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3244237&rft_dat=%3Cproquest_RIE%3E2780987101%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780987101&rft_id=info:pmid/&rft_ieee_id=10042467&rfr_iscdi=true