Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016
The traditional deep learning-based bearing fault diagnosis approaches assume that the training and test data follow the same distribution. This assumption, however, is not always true for the bearing data collected in practical scenarios, leading to significant decline to fault diagnosis performanc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2023-01, Vol.72, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 72 |
creator | Chen, Xiaohan Yang, Rui Xue, Yihao Huang, Mengjie Ferrero, Roberto Wang, Zidong |
description | The traditional deep learning-based bearing fault diagnosis approaches assume that the training and test data follow the same distribution. This assumption, however, is not always true for the bearing data collected in practical scenarios, leading to significant decline to fault diagnosis performance. In order to satisfy this assumption, the transfer learning concept is introduced in deep learning by transferring the knowledge learned from other data or models. Due to the excellent capability of feature learning and domain transfer, deep transfer learning methods have gained widespread attention in bearing fault diagnosis in recent years. This article presents a comprehensive review of the development of deep transfer learning-based bearing fault diagnosis approaches since 2016. In this review, a novel taxonomy of deep transfer learning-based bearing fault diagnosis methods is proposed from the perspective of target domain data properties divided by labels, machines, and faults. By covering the whole life cycle of deep transfer learning-based fault diagnosis and discussing the research challenges and opportunities, this review provides a systematic guideline for researchers and practitioners to efficiently identify suitable deep transfer learning models based on the actual problems encountered in bearing fault diagnosis. |
doi_str_mv | 10.1109/TIM.2023.3244237 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10042467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10042467</ieee_id><sourcerecordid>2780987101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b4cdd19425fefe2970da1ce0f77c5ec7409d5823262cbeff8cb9e3b04474fea53</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYjePXho4nlx-rHbrTcEURKMCeC56XanZAnsYrto-PcugYOneSd53pnkIeSewYAx0E_L6ceAAxcDwaXkQl2QHktTlegs45ekB8DyRMs0uyY3Ma4BQGVS9ch8jLijy2Dr6DHQGdpQV_WK-ibQl2455ondb1o6ruyqbmIVn-mQLg6xxa1tK0fn-FPhL11UtUPKgWW35MrbTcS78-yTr8nrcvSezD7fpqPhLHFCyDYppCtLpiVPPXrkWkFpmUPwSrkUnZKgyzTngmfcFeh97gqNogAplfRoU9Enj6e7u9B87zG2Zt3sQ929NFzloHPFgHUUnCgXmhgDerML1daGg2FgjuZMZ84czZmzua7ycKpUiPgPB8llpsQfif1o4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780987101</pqid></control><display><type>article</type><title>Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Xiaohan ; Yang, Rui ; Xue, Yihao ; Huang, Mengjie ; Ferrero, Roberto ; Wang, Zidong</creator><creatorcontrib>Chen, Xiaohan ; Yang, Rui ; Xue, Yihao ; Huang, Mengjie ; Ferrero, Roberto ; Wang, Zidong</creatorcontrib><description>The traditional deep learning-based bearing fault diagnosis approaches assume that the training and test data follow the same distribution. This assumption, however, is not always true for the bearing data collected in practical scenarios, leading to significant decline to fault diagnosis performance. In order to satisfy this assumption, the transfer learning concept is introduced in deep learning by transferring the knowledge learned from other data or models. Due to the excellent capability of feature learning and domain transfer, deep transfer learning methods have gained widespread attention in bearing fault diagnosis in recent years. This article presents a comprehensive review of the development of deep transfer learning-based bearing fault diagnosis approaches since 2016. In this review, a novel taxonomy of deep transfer learning-based bearing fault diagnosis methods is proposed from the perspective of target domain data properties divided by labels, machines, and faults. By covering the whole life cycle of deep transfer learning-based fault diagnosis and discussing the research challenges and opportunities, this review provides a systematic guideline for researchers and practitioners to efficiently identify suitable deep transfer learning models based on the actual problems encountered in bearing fault diagnosis.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3244237</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bearing fault ; Data models ; Deep learning ; deep transfer learning ; Domains ; Fault diagnosis ; Feature extraction ; Hidden Markov models ; Task analysis ; Taxonomy ; Transfer learning</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b4cdd19425fefe2970da1ce0f77c5ec7409d5823262cbeff8cb9e3b04474fea53</citedby><cites>FETCH-LOGICAL-c334t-b4cdd19425fefe2970da1ce0f77c5ec7409d5823262cbeff8cb9e3b04474fea53</cites><orcidid>0000-0002-5634-5476 ; 0000-0001-8163-8679 ; 0000-0002-3310-4864 ; 0000-0001-6462-4216 ; 0000-0001-7820-9021 ; 0000-0002-9576-7401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10042467$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10042467$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Xiaohan</creatorcontrib><creatorcontrib>Yang, Rui</creatorcontrib><creatorcontrib>Xue, Yihao</creatorcontrib><creatorcontrib>Huang, Mengjie</creatorcontrib><creatorcontrib>Ferrero, Roberto</creatorcontrib><creatorcontrib>Wang, Zidong</creatorcontrib><title>Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The traditional deep learning-based bearing fault diagnosis approaches assume that the training and test data follow the same distribution. This assumption, however, is not always true for the bearing data collected in practical scenarios, leading to significant decline to fault diagnosis performance. In order to satisfy this assumption, the transfer learning concept is introduced in deep learning by transferring the knowledge learned from other data or models. Due to the excellent capability of feature learning and domain transfer, deep transfer learning methods have gained widespread attention in bearing fault diagnosis in recent years. This article presents a comprehensive review of the development of deep transfer learning-based bearing fault diagnosis approaches since 2016. In this review, a novel taxonomy of deep transfer learning-based bearing fault diagnosis methods is proposed from the perspective of target domain data properties divided by labels, machines, and faults. By covering the whole life cycle of deep transfer learning-based fault diagnosis and discussing the research challenges and opportunities, this review provides a systematic guideline for researchers and practitioners to efficiently identify suitable deep transfer learning models based on the actual problems encountered in bearing fault diagnosis.</description><subject>Bearing fault</subject><subject>Data models</subject><subject>Deep learning</subject><subject>deep transfer learning</subject><subject>Domains</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Hidden Markov models</subject><subject>Task analysis</subject><subject>Taxonomy</subject><subject>Transfer learning</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYjePXho4nlx-rHbrTcEURKMCeC56XanZAnsYrto-PcugYOneSd53pnkIeSewYAx0E_L6ceAAxcDwaXkQl2QHktTlegs45ekB8DyRMs0uyY3Ma4BQGVS9ch8jLijy2Dr6DHQGdpQV_WK-ibQl2455ondb1o6ruyqbmIVn-mQLg6xxa1tK0fn-FPhL11UtUPKgWW35MrbTcS78-yTr8nrcvSezD7fpqPhLHFCyDYppCtLpiVPPXrkWkFpmUPwSrkUnZKgyzTngmfcFeh97gqNogAplfRoU9Enj6e7u9B87zG2Zt3sQ929NFzloHPFgHUUnCgXmhgDerML1daGg2FgjuZMZ84czZmzua7ycKpUiPgPB8llpsQfif1o4g</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Chen, Xiaohan</creator><creator>Yang, Rui</creator><creator>Xue, Yihao</creator><creator>Huang, Mengjie</creator><creator>Ferrero, Roberto</creator><creator>Wang, Zidong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5634-5476</orcidid><orcidid>https://orcid.org/0000-0001-8163-8679</orcidid><orcidid>https://orcid.org/0000-0002-3310-4864</orcidid><orcidid>https://orcid.org/0000-0001-6462-4216</orcidid><orcidid>https://orcid.org/0000-0001-7820-9021</orcidid><orcidid>https://orcid.org/0000-0002-9576-7401</orcidid></search><sort><creationdate>20230101</creationdate><title>Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016</title><author>Chen, Xiaohan ; Yang, Rui ; Xue, Yihao ; Huang, Mengjie ; Ferrero, Roberto ; Wang, Zidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b4cdd19425fefe2970da1ce0f77c5ec7409d5823262cbeff8cb9e3b04474fea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bearing fault</topic><topic>Data models</topic><topic>Deep learning</topic><topic>deep transfer learning</topic><topic>Domains</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Hidden Markov models</topic><topic>Task analysis</topic><topic>Taxonomy</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaohan</creatorcontrib><creatorcontrib>Yang, Rui</creatorcontrib><creatorcontrib>Xue, Yihao</creatorcontrib><creatorcontrib>Huang, Mengjie</creatorcontrib><creatorcontrib>Ferrero, Roberto</creatorcontrib><creatorcontrib>Wang, Zidong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xiaohan</au><au>Yang, Rui</au><au>Xue, Yihao</au><au>Huang, Mengjie</au><au>Ferrero, Roberto</au><au>Wang, Zidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The traditional deep learning-based bearing fault diagnosis approaches assume that the training and test data follow the same distribution. This assumption, however, is not always true for the bearing data collected in practical scenarios, leading to significant decline to fault diagnosis performance. In order to satisfy this assumption, the transfer learning concept is introduced in deep learning by transferring the knowledge learned from other data or models. Due to the excellent capability of feature learning and domain transfer, deep transfer learning methods have gained widespread attention in bearing fault diagnosis in recent years. This article presents a comprehensive review of the development of deep transfer learning-based bearing fault diagnosis approaches since 2016. In this review, a novel taxonomy of deep transfer learning-based bearing fault diagnosis methods is proposed from the perspective of target domain data properties divided by labels, machines, and faults. By covering the whole life cycle of deep transfer learning-based fault diagnosis and discussing the research challenges and opportunities, this review provides a systematic guideline for researchers and practitioners to efficiently identify suitable deep transfer learning models based on the actual problems encountered in bearing fault diagnosis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3244237</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5634-5476</orcidid><orcidid>https://orcid.org/0000-0001-8163-8679</orcidid><orcidid>https://orcid.org/0000-0002-3310-4864</orcidid><orcidid>https://orcid.org/0000-0001-6462-4216</orcidid><orcidid>https://orcid.org/0000-0001-7820-9021</orcidid><orcidid>https://orcid.org/0000-0002-9576-7401</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_10042467 |
source | IEEE Electronic Library (IEL) |
subjects | Bearing fault Data models Deep learning deep transfer learning Domains Fault diagnosis Feature extraction Hidden Markov models Task analysis Taxonomy Transfer learning |
title | Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Transfer%20Learning%20for%20Bearing%20Fault%20Diagnosis:%20A%20Systematic%20Review%20Since%202016&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Chen,%20Xiaohan&rft.date=2023-01-01&rft.volume=72&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3244237&rft_dat=%3Cproquest_RIE%3E2780987101%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780987101&rft_id=info:pmid/&rft_ieee_id=10042467&rfr_iscdi=true |