Text Prior Guided Scene Text Image Super-resolution
Scene text image super-resolution (STISR) aims to improve the resolution and visual quality of low-resolution (LR) scene text images, while simultaneously boost the performance of text recognition. However, most of the existing STISR methods regard text images as natural scene images, ignoring the c...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2023-01, Vol.PP, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on image processing |
container_volume | PP |
creator | Ma, Jianqi Guo, Shi Zhang, Lei |
description | Scene text image super-resolution (STISR) aims to improve the resolution and visual quality of low-resolution (LR) scene text images, while simultaneously boost the performance of text recognition. However, most of the existing STISR methods regard text images as natural scene images, ignoring the categorical information of text. In this paper, we make an inspiring attempt to embed text recognition prior into STISR model. Specifically, we adopt the predicted character recognition probability sequence as the text prior, which can be obtained conveniently from a text recognition model. The text prior provides categorical guidance to recover high-resolution (HR) text images. On the other hand, the reconstructed HR image can refine the text prior in return. Finally, we present a multi-stage text prior guided super-resolution (TPGSR) framework for STISR. Our experiments on the benchmark TextZoom dataset show that TPGSR can not only effectively improve the visual quality of scene text images, but also significantly improve the text recognition accuracy over existing STISR methods. Our model trained on TextZoom also demonstrates certain generalization capability to the LR images in other datasets. |
doi_str_mv | 10.1109/TIP.2023.3237002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10042236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10042236</ieee_id><sourcerecordid>2797149916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-a3674c94b3d925fa2c6f2bb517e7b04d5f19f8273d4ca042e32502e510f078503</originalsourceid><addsrcrecordid>eNpdkMtLA0EMhwdRbK3ePYgsePGyNfPuHKVoLRQstJ6HfWRlyz7qzC7Y_96prSKeEsKXH8lHyDWFMaVgHtbz5ZgB42POuAZgJ2RIjaAxgGCnoQepY02FGZAL7zcAVEiqzskgwIwZEEPC1_jZRUtXti6a9WWOebTKsMHoez6vk3eMVv0WXezQt1XflW1zSc6KpPJ4dawj8vb8tJ6-xIvX2Xz6uIgzLiZdnHClRWZEynPDZJGwTBUsTSXVqFMQuSyoKSZM81xkSTgYOZPAUFIoQE8k8BG5P-RuXfvRo-9sXfoMqyppsO29ZdrsnzNUBfTuH7ppe9eE6wKljVKaKhkoOFCZa713WNitK-vE7SwFuxdqg1C7F2qPQsPK7TG4T2vMfxd-DAbg5gCUiPgnLzzEuOJf8fR2Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779667165</pqid></control><display><type>article</type><title>Text Prior Guided Scene Text Image Super-resolution</title><source>IEEE Electronic Library (IEL)</source><creator>Ma, Jianqi ; Guo, Shi ; Zhang, Lei</creator><creatorcontrib>Ma, Jianqi ; Guo, Shi ; Zhang, Lei</creatorcontrib><description>Scene text image super-resolution (STISR) aims to improve the resolution and visual quality of low-resolution (LR) scene text images, while simultaneously boost the performance of text recognition. However, most of the existing STISR methods regard text images as natural scene images, ignoring the categorical information of text. In this paper, we make an inspiring attempt to embed text recognition prior into STISR model. Specifically, we adopt the predicted character recognition probability sequence as the text prior, which can be obtained conveniently from a text recognition model. The text prior provides categorical guidance to recover high-resolution (HR) text images. On the other hand, the reconstructed HR image can refine the text prior in return. Finally, we present a multi-stage text prior guided super-resolution (TPGSR) framework for STISR. Our experiments on the benchmark TextZoom dataset show that TPGSR can not only effectively improve the visual quality of scene text images, but also significantly improve the text recognition accuracy over existing STISR methods. Our model trained on TextZoom also demonstrates certain generalization capability to the LR images in other datasets.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2023.3237002</identifier><identifier>PMID: 37022904</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Character recognition ; Datasets ; Feature extraction ; Generators ; Image quality ; Image recognition ; Image reconstruction ; Image resolution ; Scene Text Image Super-resolution ; Source code ; Super-resolution ; Superresolution ; Text Prior ; Text recognition ; Visualization</subject><ispartof>IEEE transactions on image processing, 2023-01, Vol.PP, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-a3674c94b3d925fa2c6f2bb517e7b04d5f19f8273d4ca042e32502e510f078503</citedby><cites>FETCH-LOGICAL-c348t-a3674c94b3d925fa2c6f2bb517e7b04d5f19f8273d4ca042e32502e510f078503</cites><orcidid>0000-0002-2078-4215 ; 0000-0001-5155-6162 ; 0000-0002-1628-1156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10042236$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10042236$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37022904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Jianqi</creatorcontrib><creatorcontrib>Guo, Shi</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><title>Text Prior Guided Scene Text Image Super-resolution</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Scene text image super-resolution (STISR) aims to improve the resolution and visual quality of low-resolution (LR) scene text images, while simultaneously boost the performance of text recognition. However, most of the existing STISR methods regard text images as natural scene images, ignoring the categorical information of text. In this paper, we make an inspiring attempt to embed text recognition prior into STISR model. Specifically, we adopt the predicted character recognition probability sequence as the text prior, which can be obtained conveniently from a text recognition model. The text prior provides categorical guidance to recover high-resolution (HR) text images. On the other hand, the reconstructed HR image can refine the text prior in return. Finally, we present a multi-stage text prior guided super-resolution (TPGSR) framework for STISR. Our experiments on the benchmark TextZoom dataset show that TPGSR can not only effectively improve the visual quality of scene text images, but also significantly improve the text recognition accuracy over existing STISR methods. Our model trained on TextZoom also demonstrates certain generalization capability to the LR images in other datasets.</description><subject>Character recognition</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Generators</subject><subject>Image quality</subject><subject>Image recognition</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Scene Text Image Super-resolution</subject><subject>Source code</subject><subject>Super-resolution</subject><subject>Superresolution</subject><subject>Text Prior</subject><subject>Text recognition</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLA0EMhwdRbK3ePYgsePGyNfPuHKVoLRQstJ6HfWRlyz7qzC7Y_96prSKeEsKXH8lHyDWFMaVgHtbz5ZgB42POuAZgJ2RIjaAxgGCnoQepY02FGZAL7zcAVEiqzskgwIwZEEPC1_jZRUtXti6a9WWOebTKsMHoez6vk3eMVv0WXezQt1XflW1zSc6KpPJ4dawj8vb8tJ6-xIvX2Xz6uIgzLiZdnHClRWZEynPDZJGwTBUsTSXVqFMQuSyoKSZM81xkSTgYOZPAUFIoQE8k8BG5P-RuXfvRo-9sXfoMqyppsO29ZdrsnzNUBfTuH7ppe9eE6wKljVKaKhkoOFCZa713WNitK-vE7SwFuxdqg1C7F2qPQsPK7TG4T2vMfxd-DAbg5gCUiPgnLzzEuOJf8fR2Xw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Ma, Jianqi</creator><creator>Guo, Shi</creator><creator>Zhang, Lei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2078-4215</orcidid><orcidid>https://orcid.org/0000-0001-5155-6162</orcidid><orcidid>https://orcid.org/0000-0002-1628-1156</orcidid></search><sort><creationdate>20230101</creationdate><title>Text Prior Guided Scene Text Image Super-resolution</title><author>Ma, Jianqi ; Guo, Shi ; Zhang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-a3674c94b3d925fa2c6f2bb517e7b04d5f19f8273d4ca042e32502e510f078503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Character recognition</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Generators</topic><topic>Image quality</topic><topic>Image recognition</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Scene Text Image Super-resolution</topic><topic>Source code</topic><topic>Super-resolution</topic><topic>Superresolution</topic><topic>Text Prior</topic><topic>Text recognition</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Jianqi</creatorcontrib><creatorcontrib>Guo, Shi</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Jianqi</au><au>Guo, Shi</au><au>Zhang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Text Prior Guided Scene Text Image Super-resolution</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>PP</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Scene text image super-resolution (STISR) aims to improve the resolution and visual quality of low-resolution (LR) scene text images, while simultaneously boost the performance of text recognition. However, most of the existing STISR methods regard text images as natural scene images, ignoring the categorical information of text. In this paper, we make an inspiring attempt to embed text recognition prior into STISR model. Specifically, we adopt the predicted character recognition probability sequence as the text prior, which can be obtained conveniently from a text recognition model. The text prior provides categorical guidance to recover high-resolution (HR) text images. On the other hand, the reconstructed HR image can refine the text prior in return. Finally, we present a multi-stage text prior guided super-resolution (TPGSR) framework for STISR. Our experiments on the benchmark TextZoom dataset show that TPGSR can not only effectively improve the visual quality of scene text images, but also significantly improve the text recognition accuracy over existing STISR methods. Our model trained on TextZoom also demonstrates certain generalization capability to the LR images in other datasets.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37022904</pmid><doi>10.1109/TIP.2023.3237002</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2078-4215</orcidid><orcidid>https://orcid.org/0000-0001-5155-6162</orcidid><orcidid>https://orcid.org/0000-0002-1628-1156</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2023-01, Vol.PP, p.1-1 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_ieee_primary_10042236 |
source | IEEE Electronic Library (IEL) |
subjects | Character recognition Datasets Feature extraction Generators Image quality Image recognition Image reconstruction Image resolution Scene Text Image Super-resolution Source code Super-resolution Superresolution Text Prior Text recognition Visualization |
title | Text Prior Guided Scene Text Image Super-resolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Text%20Prior%20Guided%20Scene%20Text%20Image%20Super-resolution&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Ma,%20Jianqi&rft.date=2023-01-01&rft.volume=PP&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3237002&rft_dat=%3Cproquest_RIE%3E2797149916%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779667165&rft_id=info:pmid/37022904&rft_ieee_id=10042236&rfr_iscdi=true |