Bandwidth-Scalable Digital Predistortion of Active Phased Array using Transfer Learning Neural Network
This paper proposes a transfer learning neural network (TLNN) approach for digital predistortion (DPD) of mm-Wave active phased arrays (APA) operated under variable signal bandwidth regimes. Compared with the conventional artificial neural network (ANN) method, the proposed approach can achieve simi...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Jalili, Feridoon Tafuri, Felice Francesco Jensen, Ole Kiel Li, Yunfeng Shen, Ming Pedersen, Gert F. |
description | This paper proposes a transfer learning neural network (TLNN) approach for digital predistortion (DPD) of mm-Wave active phased arrays (APA) operated under variable signal bandwidth regimes. Compared with the conventional artificial neural network (ANN) method, the proposed approach can achieve similar linearization performance with much lower computational complexity by transferring part of a trained model from one bandwidth to another bandwidth. In the recently introduced 5G, the increased signal bandwidth triggers considerable memory effects in the APA. Moreover, dealing with different signal bandwidths typically requires a time-consuming recalculation of the predistorter parameters. In this paper, the authors propose to have those challenges solved by using a DPD model based on the transfer learning method. The proposed approach was validated with over-the-air (OTA) measurements on an APA excited with signals of varying bandwidth, namely from 20 MHz to 100 MHz. Experimental results show a significant reduction in the training time while ensuring good linearization performance. With the applied TLNN DPD, an 8.5 dB improvement of adjacent channel leakage ratio (ACLR) and 8.6 % points improvement of error vector magnitude (EVM) is achieved. Under the variable bandwidth regime, the complexity of the DPD model in terms of the number of multiplications is reduced from 199168 to 160. The proposed TLNN DPD proved to be robust concerning variation in the bandwidth of the APA excitation signal. |
doi_str_mv | 10.1109/ACCESS.2023.3242648 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10038603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10038603</ieee_id><doaj_id>oai_doaj_org_article_4f286786be4545849a4127c25ca59d99</doaj_id><sourcerecordid>2776794704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-9e2f00ef92471cb1c0887d4c9b01bf5df61ff906987e4f50dfe4654de24b37703</originalsourceid><addsrcrecordid>eNpNUU1PGzEQXVVFKqL8gvZgifOm_v44piktSBEghZ4trz0OTpc1tTeg_PtuWFQxlxk9vfdmRq9pvhC8IASbb8vV6nKzWVBM2YJRTiXXH5pTSqRpmWDy47v5U3Ne6w5PpSdIqNMmfndDeElhfGg33vWu6wH9SNs0uh7dFQipjrmMKQ8oR7T0Y3oGdPfgKgS0LMUd0L6mYYvuixtqhILW4MpwRG5gXyaPGxhfcvnzuTmJrq9w_tbPmt8_L-9XV-369tf1arluPcdmbA3QiDFEQ7kiviMea60C96bDpIsiREliNFgarYBHgUMELgUPQHnHlMLsrLmefUN2O_tU0qMrB5tdsq9ALlvrpnd8D5ZHqqXSsgMuuNDcOE6o8lR4J0wwZvK6mL2eSv67hzraXd6XYTrfUqWkMlxhPrHYzPIl11og_t9KsD3mY-d87DEf-5bPpPo6qxIAvFNgpiVm7B9GWouP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776794704</pqid></control><display><type>article</type><title>Bandwidth-Scalable Digital Predistortion of Active Phased Array using Transfer Learning Neural Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jalili, Feridoon ; Tafuri, Felice Francesco ; Jensen, Ole Kiel ; Li, Yunfeng ; Shen, Ming ; Pedersen, Gert F.</creator><creatorcontrib>Jalili, Feridoon ; Tafuri, Felice Francesco ; Jensen, Ole Kiel ; Li, Yunfeng ; Shen, Ming ; Pedersen, Gert F.</creatorcontrib><description>This paper proposes a transfer learning neural network (TLNN) approach for digital predistortion (DPD) of mm-Wave active phased arrays (APA) operated under variable signal bandwidth regimes. Compared with the conventional artificial neural network (ANN) method, the proposed approach can achieve similar linearization performance with much lower computational complexity by transferring part of a trained model from one bandwidth to another bandwidth. In the recently introduced 5G, the increased signal bandwidth triggers considerable memory effects in the APA. Moreover, dealing with different signal bandwidths typically requires a time-consuming recalculation of the predistorter parameters. In this paper, the authors propose to have those challenges solved by using a DPD model based on the transfer learning method. The proposed approach was validated with over-the-air (OTA) measurements on an APA excited with signals of varying bandwidth, namely from 20 MHz to 100 MHz. Experimental results show a significant reduction in the training time while ensuring good linearization performance. With the applied TLNN DPD, an 8.5 dB improvement of adjacent channel leakage ratio (ACLR) and 8.6 % points improvement of error vector magnitude (EVM) is achieved. Under the variable bandwidth regime, the complexity of the DPD model in terms of the number of multiplications is reduced from 199168 to 160. The proposed TLNN DPD proved to be robust concerning variation in the bandwidth of the APA excitation signal.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3242648</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active phased array (APA) ; Artificial neural networks ; artificial neural networks (ANN) ; Bandwidth ; Bandwidths ; Complexity ; Computational modeling ; digital pre-distortion (DPD) ; Digital systems ; Field-flow fractionation ; Learning ; Linearization ; Millimeter waves ; Neural networks ; over-the-air (OTA) ; Phased arrays ; Transfer learning ; transfer learning (TL)</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-9e2f00ef92471cb1c0887d4c9b01bf5df61ff906987e4f50dfe4654de24b37703</citedby><cites>FETCH-LOGICAL-c409t-9e2f00ef92471cb1c0887d4c9b01bf5df61ff906987e4f50dfe4654de24b37703</cites><orcidid>0000-0002-9388-3513 ; 0000-0002-6512-9353 ; 0000-0003-4077-4652 ; 0000-0002-7918-2251 ; 0000-0002-6570-7387 ; 0000-0002-3645-3728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10038603$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,27631,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Jalili, Feridoon</creatorcontrib><creatorcontrib>Tafuri, Felice Francesco</creatorcontrib><creatorcontrib>Jensen, Ole Kiel</creatorcontrib><creatorcontrib>Li, Yunfeng</creatorcontrib><creatorcontrib>Shen, Ming</creatorcontrib><creatorcontrib>Pedersen, Gert F.</creatorcontrib><title>Bandwidth-Scalable Digital Predistortion of Active Phased Array using Transfer Learning Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper proposes a transfer learning neural network (TLNN) approach for digital predistortion (DPD) of mm-Wave active phased arrays (APA) operated under variable signal bandwidth regimes. Compared with the conventional artificial neural network (ANN) method, the proposed approach can achieve similar linearization performance with much lower computational complexity by transferring part of a trained model from one bandwidth to another bandwidth. In the recently introduced 5G, the increased signal bandwidth triggers considerable memory effects in the APA. Moreover, dealing with different signal bandwidths typically requires a time-consuming recalculation of the predistorter parameters. In this paper, the authors propose to have those challenges solved by using a DPD model based on the transfer learning method. The proposed approach was validated with over-the-air (OTA) measurements on an APA excited with signals of varying bandwidth, namely from 20 MHz to 100 MHz. Experimental results show a significant reduction in the training time while ensuring good linearization performance. With the applied TLNN DPD, an 8.5 dB improvement of adjacent channel leakage ratio (ACLR) and 8.6 % points improvement of error vector magnitude (EVM) is achieved. Under the variable bandwidth regime, the complexity of the DPD model in terms of the number of multiplications is reduced from 199168 to 160. The proposed TLNN DPD proved to be robust concerning variation in the bandwidth of the APA excitation signal.</description><subject>Active phased array (APA)</subject><subject>Artificial neural networks</subject><subject>artificial neural networks (ANN)</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Complexity</subject><subject>Computational modeling</subject><subject>digital pre-distortion (DPD)</subject><subject>Digital systems</subject><subject>Field-flow fractionation</subject><subject>Learning</subject><subject>Linearization</subject><subject>Millimeter waves</subject><subject>Neural networks</subject><subject>over-the-air (OTA)</subject><subject>Phased arrays</subject><subject>Transfer learning</subject><subject>transfer learning (TL)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PGzEQXVVFKqL8gvZgifOm_v44piktSBEghZ4trz0OTpc1tTeg_PtuWFQxlxk9vfdmRq9pvhC8IASbb8vV6nKzWVBM2YJRTiXXH5pTSqRpmWDy47v5U3Ne6w5PpSdIqNMmfndDeElhfGg33vWu6wH9SNs0uh7dFQipjrmMKQ8oR7T0Y3oGdPfgKgS0LMUd0L6mYYvuixtqhILW4MpwRG5gXyaPGxhfcvnzuTmJrq9w_tbPmt8_L-9XV-369tf1arluPcdmbA3QiDFEQ7kiviMea60C96bDpIsiREliNFgarYBHgUMELgUPQHnHlMLsrLmefUN2O_tU0qMrB5tdsq9ALlvrpnd8D5ZHqqXSsgMuuNDcOE6o8lR4J0wwZvK6mL2eSv67hzraXd6XYTrfUqWkMlxhPrHYzPIl11og_t9KsD3mY-d87DEf-5bPpPo6qxIAvFNgpiVm7B9GWouP</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Jalili, Feridoon</creator><creator>Tafuri, Felice Francesco</creator><creator>Jensen, Ole Kiel</creator><creator>Li, Yunfeng</creator><creator>Shen, Ming</creator><creator>Pedersen, Gert F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9388-3513</orcidid><orcidid>https://orcid.org/0000-0002-6512-9353</orcidid><orcidid>https://orcid.org/0000-0003-4077-4652</orcidid><orcidid>https://orcid.org/0000-0002-7918-2251</orcidid><orcidid>https://orcid.org/0000-0002-6570-7387</orcidid><orcidid>https://orcid.org/0000-0002-3645-3728</orcidid></search><sort><creationdate>20230101</creationdate><title>Bandwidth-Scalable Digital Predistortion of Active Phased Array using Transfer Learning Neural Network</title><author>Jalili, Feridoon ; Tafuri, Felice Francesco ; Jensen, Ole Kiel ; Li, Yunfeng ; Shen, Ming ; Pedersen, Gert F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-9e2f00ef92471cb1c0887d4c9b01bf5df61ff906987e4f50dfe4654de24b37703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active phased array (APA)</topic><topic>Artificial neural networks</topic><topic>artificial neural networks (ANN)</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Complexity</topic><topic>Computational modeling</topic><topic>digital pre-distortion (DPD)</topic><topic>Digital systems</topic><topic>Field-flow fractionation</topic><topic>Learning</topic><topic>Linearization</topic><topic>Millimeter waves</topic><topic>Neural networks</topic><topic>over-the-air (OTA)</topic><topic>Phased arrays</topic><topic>Transfer learning</topic><topic>transfer learning (TL)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jalili, Feridoon</creatorcontrib><creatorcontrib>Tafuri, Felice Francesco</creatorcontrib><creatorcontrib>Jensen, Ole Kiel</creatorcontrib><creatorcontrib>Li, Yunfeng</creatorcontrib><creatorcontrib>Shen, Ming</creatorcontrib><creatorcontrib>Pedersen, Gert F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jalili, Feridoon</au><au>Tafuri, Felice Francesco</au><au>Jensen, Ole Kiel</au><au>Li, Yunfeng</au><au>Shen, Ming</au><au>Pedersen, Gert F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bandwidth-Scalable Digital Predistortion of Active Phased Array using Transfer Learning Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes a transfer learning neural network (TLNN) approach for digital predistortion (DPD) of mm-Wave active phased arrays (APA) operated under variable signal bandwidth regimes. Compared with the conventional artificial neural network (ANN) method, the proposed approach can achieve similar linearization performance with much lower computational complexity by transferring part of a trained model from one bandwidth to another bandwidth. In the recently introduced 5G, the increased signal bandwidth triggers considerable memory effects in the APA. Moreover, dealing with different signal bandwidths typically requires a time-consuming recalculation of the predistorter parameters. In this paper, the authors propose to have those challenges solved by using a DPD model based on the transfer learning method. The proposed approach was validated with over-the-air (OTA) measurements on an APA excited with signals of varying bandwidth, namely from 20 MHz to 100 MHz. Experimental results show a significant reduction in the training time while ensuring good linearization performance. With the applied TLNN DPD, an 8.5 dB improvement of adjacent channel leakage ratio (ACLR) and 8.6 % points improvement of error vector magnitude (EVM) is achieved. Under the variable bandwidth regime, the complexity of the DPD model in terms of the number of multiplications is reduced from 199168 to 160. The proposed TLNN DPD proved to be robust concerning variation in the bandwidth of the APA excitation signal.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3242648</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9388-3513</orcidid><orcidid>https://orcid.org/0000-0002-6512-9353</orcidid><orcidid>https://orcid.org/0000-0003-4077-4652</orcidid><orcidid>https://orcid.org/0000-0002-7918-2251</orcidid><orcidid>https://orcid.org/0000-0002-6570-7387</orcidid><orcidid>https://orcid.org/0000-0002-3645-3728</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10038603 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Active phased array (APA) Artificial neural networks artificial neural networks (ANN) Bandwidth Bandwidths Complexity Computational modeling digital pre-distortion (DPD) Digital systems Field-flow fractionation Learning Linearization Millimeter waves Neural networks over-the-air (OTA) Phased arrays Transfer learning transfer learning (TL) |
title | Bandwidth-Scalable Digital Predistortion of Active Phased Array using Transfer Learning Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bandwidth-Scalable%20Digital%20Predistortion%20of%20Active%20Phased%20Array%20using%20Transfer%20Learning%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Jalili,%20Feridoon&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3242648&rft_dat=%3Cproquest_ieee_%3E2776794704%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776794704&rft_id=info:pmid/&rft_ieee_id=10038603&rft_doaj_id=oai_doaj_org_article_4f286786be4545849a4127c25ca59d99&rfr_iscdi=true |