LoRa and Rotating Polarization Wave: Physical Layer Principles and Performance Evaluation
Link reliability and enhanced coverage are the primitive concerns of Low-Power Wide-Area Networks (LPWANs) for suitability to critical Internet of Things (IoT) applications. Reliability is limited by the destructive multipath propagation, data rate and sensitivity, that ultimately limits the coverag...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023, Vol.11, p.14892-14905 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14905 |
---|---|
container_issue | |
container_start_page | 14892 |
container_title | IEEE access |
container_volume | 11 |
creator | Ahmad, Zaid Hashim, Shaiful J. Ferre, Guillaume Rokhani, Fakhrul Z. Al-Haddad, S. A. R. Sali, Aduwati |
description | Link reliability and enhanced coverage are the primitive concerns of Low-Power Wide-Area Networks (LPWANs) for suitability to critical Internet of Things (IoT) applications. Reliability is limited by the destructive multipath propagation, data rate and sensitivity, that ultimately limits the coverage range. LoRa by far is the predominant LPWAN operating on unlicensed spectrum. Despite its robust Chirp Spread Spectrum (CSS) modulation, there is a severe degradation in its error performance particularly in hostile propagation environments, and an excessive reduction in coverage. Rotating Polarization Wave (RPW) is a potential LPWAN recently emerged to achieve a highly reliable IoT and Machine-to-Machine (M2M) communication. This is the first paper to provide comprehensive error performance comparison between LoRa and RPW. Okumura-Hata model is used for median path loss calculation. Shadowing and fast fading margins of RPW and LoRa are estimated. Effective gain of RPW is computed from error performance. Results have shown that LoRa offers a sensitivity of 23 dB higher than RPW under AWGN conditions. However, under fading conditions, RPW exhibits a sensitivity of 15 dB higher than LoRa. At a reference distance of 100 m, the maximum received signal strength of RPW is −39 dBm, which is 29 dB above LoRa. The maximum coverage distance attained by RPW is 15 km, which is 1.5 times of LoRa. |
doi_str_mv | 10.1109/ACCESS.2023.3242552 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10036429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10036429</ieee_id><doaj_id>oai_doaj_org_article_bb25fe937f674edb9b0563b0549e4bba</doaj_id><sourcerecordid>2777580910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-54a60e944318d94ae51ccfb705bbb8d29bdf506b98b1a92ca64bfd10f5d52a173</originalsourceid><addsrcrecordid>eNpVkV9r2zAUxU1poaXrJ1gfDH3qQzL9ta2-hZAuBcNC2zH2JK7kq1bBtVLZCWSffkpcRqcH6epwfgcuJ8u-UjKllKhvs_l88fQ0ZYTxKWeCSclOsgtGCzXhkhenn-bz7Krv1ySdKkmyvMh-1-ERcuia_DEMMPjuJV-FFqL_kz6hy3_BDu_y1eu-9xbavIY9xnwVfWf9psX-SK4wuhDfoLOYL3bQbo_ol-zMQdvj1cd7mf28XzzPl5P6x_eH-ayeWCH4MJECCoIqzbRqlACU1FpnSiKNMVXDlGmcJIVRlaGgmIVCGNdQ4mQjGdCSX2YPY24TYK030b9B3OsAXh-FEF80xMHbFrUxTDpUvHRFKbAxyhBZ8HQJhcIYSFm3Y9YrtP9FLWe1PmiEK1VJwnc0eW9G7yaG9y32g16HbezSqpqVZSkroihJLj66bAx9H9H9i6VEH-rTY336UJ_-qC9R1yPlEfETQXghmOJ_AaMEla8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777580910</pqid></control><display><type>article</type><title>LoRa and Rotating Polarization Wave: Physical Layer Principles and Performance Evaluation</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Ahmad, Zaid ; Hashim, Shaiful J. ; Ferre, Guillaume ; Rokhani, Fakhrul Z. ; Al-Haddad, S. A. R. ; Sali, Aduwati</creator><creatorcontrib>Ahmad, Zaid ; Hashim, Shaiful J. ; Ferre, Guillaume ; Rokhani, Fakhrul Z. ; Al-Haddad, S. A. R. ; Sali, Aduwati</creatorcontrib><description>Link reliability and enhanced coverage are the primitive concerns of Low-Power Wide-Area Networks (LPWANs) for suitability to critical Internet of Things (IoT) applications. Reliability is limited by the destructive multipath propagation, data rate and sensitivity, that ultimately limits the coverage range. LoRa by far is the predominant LPWAN operating on unlicensed spectrum. Despite its robust Chirp Spread Spectrum (CSS) modulation, there is a severe degradation in its error performance particularly in hostile propagation environments, and an excessive reduction in coverage. Rotating Polarization Wave (RPW) is a potential LPWAN recently emerged to achieve a highly reliable IoT and Machine-to-Machine (M2M) communication. This is the first paper to provide comprehensive error performance comparison between LoRa and RPW. Okumura-Hata model is used for median path loss calculation. Shadowing and fast fading margins of RPW and LoRa are estimated. Effective gain of RPW is computed from error performance. Results have shown that LoRa offers a sensitivity of 23 dB higher than RPW under AWGN conditions. However, under fading conditions, RPW exhibits a sensitivity of 15 dB higher than LoRa. At a reference distance of 100 m, the maximum received signal strength of RPW is −39 dBm, which is 29 dB above LoRa. The maximum coverage distance attained by RPW is 15 km, which is 1.5 times of LoRa.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3242552</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computer Science ; Economics ; Fading ; Fading channels ; Internet of Things ; IoT ; link budget ; LoRa ; Low-power wide area networks ; LPWAN ; Multipath channels ; multipath fading ; Network reliability ; Networking and Internet Architecture ; Okumura-Hata ; Performance evaluation ; Physical layer ; Polarization ; polarization diversity ; Reliability analysis ; Rotation ; RPW ; Sensitivity ; shadowing ; Signal strength ; Spread spectrum ; Symbols ; Wave propagation ; Wide area networks</subject><ispartof>IEEE access, 2023, Vol.11, p.14892-14905</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-54a60e944318d94ae51ccfb705bbb8d29bdf506b98b1a92ca64bfd10f5d52a173</citedby><cites>FETCH-LOGICAL-c443t-54a60e944318d94ae51ccfb705bbb8d29bdf506b98b1a92ca64bfd10f5d52a173</cites><orcidid>0000-0001-6748-2727 ; 0000-0002-4436-897X ; 0000-0001-5522-5096 ; 0000-0002-1692-6516 ; 0000-0001-6449-8184 ; 0000-0003-1327-525X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10036429$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,2096,4010,27610,27900,27901,27902,54908</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03998503$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmad, Zaid</creatorcontrib><creatorcontrib>Hashim, Shaiful J.</creatorcontrib><creatorcontrib>Ferre, Guillaume</creatorcontrib><creatorcontrib>Rokhani, Fakhrul Z.</creatorcontrib><creatorcontrib>Al-Haddad, S. A. R.</creatorcontrib><creatorcontrib>Sali, Aduwati</creatorcontrib><title>LoRa and Rotating Polarization Wave: Physical Layer Principles and Performance Evaluation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Link reliability and enhanced coverage are the primitive concerns of Low-Power Wide-Area Networks (LPWANs) for suitability to critical Internet of Things (IoT) applications. Reliability is limited by the destructive multipath propagation, data rate and sensitivity, that ultimately limits the coverage range. LoRa by far is the predominant LPWAN operating on unlicensed spectrum. Despite its robust Chirp Spread Spectrum (CSS) modulation, there is a severe degradation in its error performance particularly in hostile propagation environments, and an excessive reduction in coverage. Rotating Polarization Wave (RPW) is a potential LPWAN recently emerged to achieve a highly reliable IoT and Machine-to-Machine (M2M) communication. This is the first paper to provide comprehensive error performance comparison between LoRa and RPW. Okumura-Hata model is used for median path loss calculation. Shadowing and fast fading margins of RPW and LoRa are estimated. Effective gain of RPW is computed from error performance. Results have shown that LoRa offers a sensitivity of 23 dB higher than RPW under AWGN conditions. However, under fading conditions, RPW exhibits a sensitivity of 15 dB higher than LoRa. At a reference distance of 100 m, the maximum received signal strength of RPW is −39 dBm, which is 29 dB above LoRa. The maximum coverage distance attained by RPW is 15 km, which is 1.5 times of LoRa.</description><subject>Computer Science</subject><subject>Economics</subject><subject>Fading</subject><subject>Fading channels</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>link budget</subject><subject>LoRa</subject><subject>Low-power wide area networks</subject><subject>LPWAN</subject><subject>Multipath channels</subject><subject>multipath fading</subject><subject>Network reliability</subject><subject>Networking and Internet Architecture</subject><subject>Okumura-Hata</subject><subject>Performance evaluation</subject><subject>Physical layer</subject><subject>Polarization</subject><subject>polarization diversity</subject><subject>Reliability analysis</subject><subject>Rotation</subject><subject>RPW</subject><subject>Sensitivity</subject><subject>shadowing</subject><subject>Signal strength</subject><subject>Spread spectrum</subject><subject>Symbols</subject><subject>Wave propagation</subject><subject>Wide area networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVkV9r2zAUxU1poaXrJ1gfDH3qQzL9ta2-hZAuBcNC2zH2JK7kq1bBtVLZCWSffkpcRqcH6epwfgcuJ8u-UjKllKhvs_l88fQ0ZYTxKWeCSclOsgtGCzXhkhenn-bz7Krv1ySdKkmyvMh-1-ERcuia_DEMMPjuJV-FFqL_kz6hy3_BDu_y1eu-9xbavIY9xnwVfWf9psX-SK4wuhDfoLOYL3bQbo_ol-zMQdvj1cd7mf28XzzPl5P6x_eH-ayeWCH4MJECCoIqzbRqlACU1FpnSiKNMVXDlGmcJIVRlaGgmIVCGNdQ4mQjGdCSX2YPY24TYK030b9B3OsAXh-FEF80xMHbFrUxTDpUvHRFKbAxyhBZ8HQJhcIYSFm3Y9YrtP9FLWe1PmiEK1VJwnc0eW9G7yaG9y32g16HbezSqpqVZSkroihJLj66bAx9H9H9i6VEH-rTY336UJ_-qC9R1yPlEfETQXghmOJ_AaMEla8</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ahmad, Zaid</creator><creator>Hashim, Shaiful J.</creator><creator>Ferre, Guillaume</creator><creator>Rokhani, Fakhrul Z.</creator><creator>Al-Haddad, S. A. R.</creator><creator>Sali, Aduwati</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6748-2727</orcidid><orcidid>https://orcid.org/0000-0002-4436-897X</orcidid><orcidid>https://orcid.org/0000-0001-5522-5096</orcidid><orcidid>https://orcid.org/0000-0002-1692-6516</orcidid><orcidid>https://orcid.org/0000-0001-6449-8184</orcidid><orcidid>https://orcid.org/0000-0003-1327-525X</orcidid></search><sort><creationdate>2023</creationdate><title>LoRa and Rotating Polarization Wave: Physical Layer Principles and Performance Evaluation</title><author>Ahmad, Zaid ; Hashim, Shaiful J. ; Ferre, Guillaume ; Rokhani, Fakhrul Z. ; Al-Haddad, S. A. R. ; Sali, Aduwati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-54a60e944318d94ae51ccfb705bbb8d29bdf506b98b1a92ca64bfd10f5d52a173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer Science</topic><topic>Economics</topic><topic>Fading</topic><topic>Fading channels</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>link budget</topic><topic>LoRa</topic><topic>Low-power wide area networks</topic><topic>LPWAN</topic><topic>Multipath channels</topic><topic>multipath fading</topic><topic>Network reliability</topic><topic>Networking and Internet Architecture</topic><topic>Okumura-Hata</topic><topic>Performance evaluation</topic><topic>Physical layer</topic><topic>Polarization</topic><topic>polarization diversity</topic><topic>Reliability analysis</topic><topic>Rotation</topic><topic>RPW</topic><topic>Sensitivity</topic><topic>shadowing</topic><topic>Signal strength</topic><topic>Spread spectrum</topic><topic>Symbols</topic><topic>Wave propagation</topic><topic>Wide area networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Zaid</creatorcontrib><creatorcontrib>Hashim, Shaiful J.</creatorcontrib><creatorcontrib>Ferre, Guillaume</creatorcontrib><creatorcontrib>Rokhani, Fakhrul Z.</creatorcontrib><creatorcontrib>Al-Haddad, S. A. R.</creatorcontrib><creatorcontrib>Sali, Aduwati</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Zaid</au><au>Hashim, Shaiful J.</au><au>Ferre, Guillaume</au><au>Rokhani, Fakhrul Z.</au><au>Al-Haddad, S. A. R.</au><au>Sali, Aduwati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LoRa and Rotating Polarization Wave: Physical Layer Principles and Performance Evaluation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>14892</spage><epage>14905</epage><pages>14892-14905</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Link reliability and enhanced coverage are the primitive concerns of Low-Power Wide-Area Networks (LPWANs) for suitability to critical Internet of Things (IoT) applications. Reliability is limited by the destructive multipath propagation, data rate and sensitivity, that ultimately limits the coverage range. LoRa by far is the predominant LPWAN operating on unlicensed spectrum. Despite its robust Chirp Spread Spectrum (CSS) modulation, there is a severe degradation in its error performance particularly in hostile propagation environments, and an excessive reduction in coverage. Rotating Polarization Wave (RPW) is a potential LPWAN recently emerged to achieve a highly reliable IoT and Machine-to-Machine (M2M) communication. This is the first paper to provide comprehensive error performance comparison between LoRa and RPW. Okumura-Hata model is used for median path loss calculation. Shadowing and fast fading margins of RPW and LoRa are estimated. Effective gain of RPW is computed from error performance. Results have shown that LoRa offers a sensitivity of 23 dB higher than RPW under AWGN conditions. However, under fading conditions, RPW exhibits a sensitivity of 15 dB higher than LoRa. At a reference distance of 100 m, the maximum received signal strength of RPW is −39 dBm, which is 29 dB above LoRa. The maximum coverage distance attained by RPW is 15 km, which is 1.5 times of LoRa.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3242552</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6748-2727</orcidid><orcidid>https://orcid.org/0000-0002-4436-897X</orcidid><orcidid>https://orcid.org/0000-0001-5522-5096</orcidid><orcidid>https://orcid.org/0000-0002-1692-6516</orcidid><orcidid>https://orcid.org/0000-0001-6449-8184</orcidid><orcidid>https://orcid.org/0000-0003-1327-525X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.14892-14905 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10036429 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals |
subjects | Computer Science Economics Fading Fading channels Internet of Things IoT link budget LoRa Low-power wide area networks LPWAN Multipath channels multipath fading Network reliability Networking and Internet Architecture Okumura-Hata Performance evaluation Physical layer Polarization polarization diversity Reliability analysis Rotation RPW Sensitivity shadowing Signal strength Spread spectrum Symbols Wave propagation Wide area networks |
title | LoRa and Rotating Polarization Wave: Physical Layer Principles and Performance Evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LoRa%20and%20Rotating%20Polarization%20Wave:%20Physical%20Layer%20Principles%20and%20Performance%20Evaluation&rft.jtitle=IEEE%20access&rft.au=Ahmad,%20Zaid&rft.date=2023&rft.volume=11&rft.spage=14892&rft.epage=14905&rft.pages=14892-14905&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3242552&rft_dat=%3Cproquest_ieee_%3E2777580910%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777580910&rft_id=info:pmid/&rft_ieee_id=10036429&rft_doaj_id=oai_doaj_org_article_bb25fe937f674edb9b0563b0549e4bba&rfr_iscdi=true |