LoRa and Rotating Polarization Wave: Physical Layer Principles and Performance Evaluation

Link reliability and enhanced coverage are the primitive concerns of Low-Power Wide-Area Networks (LPWANs) for suitability to critical Internet of Things (IoT) applications. Reliability is limited by the destructive multipath propagation, data rate and sensitivity, that ultimately limits the coverag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.14892-14905
Hauptverfasser: Ahmad, Zaid, Hashim, Shaiful J., Ferre, Guillaume, Rokhani, Fakhrul Z., Al-Haddad, S. A. R., Sali, Aduwati
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14905
container_issue
container_start_page 14892
container_title IEEE access
container_volume 11
creator Ahmad, Zaid
Hashim, Shaiful J.
Ferre, Guillaume
Rokhani, Fakhrul Z.
Al-Haddad, S. A. R.
Sali, Aduwati
description Link reliability and enhanced coverage are the primitive concerns of Low-Power Wide-Area Networks (LPWANs) for suitability to critical Internet of Things (IoT) applications. Reliability is limited by the destructive multipath propagation, data rate and sensitivity, that ultimately limits the coverage range. LoRa by far is the predominant LPWAN operating on unlicensed spectrum. Despite its robust Chirp Spread Spectrum (CSS) modulation, there is a severe degradation in its error performance particularly in hostile propagation environments, and an excessive reduction in coverage. Rotating Polarization Wave (RPW) is a potential LPWAN recently emerged to achieve a highly reliable IoT and Machine-to-Machine (M2M) communication. This is the first paper to provide comprehensive error performance comparison between LoRa and RPW. Okumura-Hata model is used for median path loss calculation. Shadowing and fast fading margins of RPW and LoRa are estimated. Effective gain of RPW is computed from error performance. Results have shown that LoRa offers a sensitivity of 23 dB higher than RPW under AWGN conditions. However, under fading conditions, RPW exhibits a sensitivity of 15 dB higher than LoRa. At a reference distance of 100 m, the maximum received signal strength of RPW is −39 dBm, which is 29 dB above LoRa. The maximum coverage distance attained by RPW is 15 km, which is 1.5 times of LoRa.
doi_str_mv 10.1109/ACCESS.2023.3242552
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10036429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10036429</ieee_id><doaj_id>oai_doaj_org_article_bb25fe937f674edb9b0563b0549e4bba</doaj_id><sourcerecordid>2777580910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-54a60e944318d94ae51ccfb705bbb8d29bdf506b98b1a92ca64bfd10f5d52a173</originalsourceid><addsrcrecordid>eNpVkV9r2zAUxU1poaXrJ1gfDH3qQzL9ta2-hZAuBcNC2zH2JK7kq1bBtVLZCWSffkpcRqcH6epwfgcuJ8u-UjKllKhvs_l88fQ0ZYTxKWeCSclOsgtGCzXhkhenn-bz7Krv1ySdKkmyvMh-1-ERcuia_DEMMPjuJV-FFqL_kz6hy3_BDu_y1eu-9xbavIY9xnwVfWf9psX-SK4wuhDfoLOYL3bQbo_ol-zMQdvj1cd7mf28XzzPl5P6x_eH-ayeWCH4MJECCoIqzbRqlACU1FpnSiKNMVXDlGmcJIVRlaGgmIVCGNdQ4mQjGdCSX2YPY24TYK030b9B3OsAXh-FEF80xMHbFrUxTDpUvHRFKbAxyhBZ8HQJhcIYSFm3Y9YrtP9FLWe1PmiEK1VJwnc0eW9G7yaG9y32g16HbezSqpqVZSkroihJLj66bAx9H9H9i6VEH-rTY336UJ_-qC9R1yPlEfETQXghmOJ_AaMEla8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777580910</pqid></control><display><type>article</type><title>LoRa and Rotating Polarization Wave: Physical Layer Principles and Performance Evaluation</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Ahmad, Zaid ; Hashim, Shaiful J. ; Ferre, Guillaume ; Rokhani, Fakhrul Z. ; Al-Haddad, S. A. R. ; Sali, Aduwati</creator><creatorcontrib>Ahmad, Zaid ; Hashim, Shaiful J. ; Ferre, Guillaume ; Rokhani, Fakhrul Z. ; Al-Haddad, S. A. R. ; Sali, Aduwati</creatorcontrib><description>Link reliability and enhanced coverage are the primitive concerns of Low-Power Wide-Area Networks (LPWANs) for suitability to critical Internet of Things (IoT) applications. Reliability is limited by the destructive multipath propagation, data rate and sensitivity, that ultimately limits the coverage range. LoRa by far is the predominant LPWAN operating on unlicensed spectrum. Despite its robust Chirp Spread Spectrum (CSS) modulation, there is a severe degradation in its error performance particularly in hostile propagation environments, and an excessive reduction in coverage. Rotating Polarization Wave (RPW) is a potential LPWAN recently emerged to achieve a highly reliable IoT and Machine-to-Machine (M2M) communication. This is the first paper to provide comprehensive error performance comparison between LoRa and RPW. Okumura-Hata model is used for median path loss calculation. Shadowing and fast fading margins of RPW and LoRa are estimated. Effective gain of RPW is computed from error performance. Results have shown that LoRa offers a sensitivity of 23 dB higher than RPW under AWGN conditions. However, under fading conditions, RPW exhibits a sensitivity of 15 dB higher than LoRa. At a reference distance of 100 m, the maximum received signal strength of RPW is −39 dBm, which is 29 dB above LoRa. The maximum coverage distance attained by RPW is 15 km, which is 1.5 times of LoRa.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3242552</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computer Science ; Economics ; Fading ; Fading channels ; Internet of Things ; IoT ; link budget ; LoRa ; Low-power wide area networks ; LPWAN ; Multipath channels ; multipath fading ; Network reliability ; Networking and Internet Architecture ; Okumura-Hata ; Performance evaluation ; Physical layer ; Polarization ; polarization diversity ; Reliability analysis ; Rotation ; RPW ; Sensitivity ; shadowing ; Signal strength ; Spread spectrum ; Symbols ; Wave propagation ; Wide area networks</subject><ispartof>IEEE access, 2023, Vol.11, p.14892-14905</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-54a60e944318d94ae51ccfb705bbb8d29bdf506b98b1a92ca64bfd10f5d52a173</citedby><cites>FETCH-LOGICAL-c443t-54a60e944318d94ae51ccfb705bbb8d29bdf506b98b1a92ca64bfd10f5d52a173</cites><orcidid>0000-0001-6748-2727 ; 0000-0002-4436-897X ; 0000-0001-5522-5096 ; 0000-0002-1692-6516 ; 0000-0001-6449-8184 ; 0000-0003-1327-525X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10036429$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,2096,4010,27610,27900,27901,27902,54908</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03998503$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmad, Zaid</creatorcontrib><creatorcontrib>Hashim, Shaiful J.</creatorcontrib><creatorcontrib>Ferre, Guillaume</creatorcontrib><creatorcontrib>Rokhani, Fakhrul Z.</creatorcontrib><creatorcontrib>Al-Haddad, S. A. R.</creatorcontrib><creatorcontrib>Sali, Aduwati</creatorcontrib><title>LoRa and Rotating Polarization Wave: Physical Layer Principles and Performance Evaluation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Link reliability and enhanced coverage are the primitive concerns of Low-Power Wide-Area Networks (LPWANs) for suitability to critical Internet of Things (IoT) applications. Reliability is limited by the destructive multipath propagation, data rate and sensitivity, that ultimately limits the coverage range. LoRa by far is the predominant LPWAN operating on unlicensed spectrum. Despite its robust Chirp Spread Spectrum (CSS) modulation, there is a severe degradation in its error performance particularly in hostile propagation environments, and an excessive reduction in coverage. Rotating Polarization Wave (RPW) is a potential LPWAN recently emerged to achieve a highly reliable IoT and Machine-to-Machine (M2M) communication. This is the first paper to provide comprehensive error performance comparison between LoRa and RPW. Okumura-Hata model is used for median path loss calculation. Shadowing and fast fading margins of RPW and LoRa are estimated. Effective gain of RPW is computed from error performance. Results have shown that LoRa offers a sensitivity of 23 dB higher than RPW under AWGN conditions. However, under fading conditions, RPW exhibits a sensitivity of 15 dB higher than LoRa. At a reference distance of 100 m, the maximum received signal strength of RPW is −39 dBm, which is 29 dB above LoRa. The maximum coverage distance attained by RPW is 15 km, which is 1.5 times of LoRa.</description><subject>Computer Science</subject><subject>Economics</subject><subject>Fading</subject><subject>Fading channels</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>link budget</subject><subject>LoRa</subject><subject>Low-power wide area networks</subject><subject>LPWAN</subject><subject>Multipath channels</subject><subject>multipath fading</subject><subject>Network reliability</subject><subject>Networking and Internet Architecture</subject><subject>Okumura-Hata</subject><subject>Performance evaluation</subject><subject>Physical layer</subject><subject>Polarization</subject><subject>polarization diversity</subject><subject>Reliability analysis</subject><subject>Rotation</subject><subject>RPW</subject><subject>Sensitivity</subject><subject>shadowing</subject><subject>Signal strength</subject><subject>Spread spectrum</subject><subject>Symbols</subject><subject>Wave propagation</subject><subject>Wide area networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVkV9r2zAUxU1poaXrJ1gfDH3qQzL9ta2-hZAuBcNC2zH2JK7kq1bBtVLZCWSffkpcRqcH6epwfgcuJ8u-UjKllKhvs_l88fQ0ZYTxKWeCSclOsgtGCzXhkhenn-bz7Krv1ySdKkmyvMh-1-ERcuia_DEMMPjuJV-FFqL_kz6hy3_BDu_y1eu-9xbavIY9xnwVfWf9psX-SK4wuhDfoLOYL3bQbo_ol-zMQdvj1cd7mf28XzzPl5P6x_eH-ayeWCH4MJECCoIqzbRqlACU1FpnSiKNMVXDlGmcJIVRlaGgmIVCGNdQ4mQjGdCSX2YPY24TYK030b9B3OsAXh-FEF80xMHbFrUxTDpUvHRFKbAxyhBZ8HQJhcIYSFm3Y9YrtP9FLWe1PmiEK1VJwnc0eW9G7yaG9y32g16HbezSqpqVZSkroihJLj66bAx9H9H9i6VEH-rTY336UJ_-qC9R1yPlEfETQXghmOJ_AaMEla8</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ahmad, Zaid</creator><creator>Hashim, Shaiful J.</creator><creator>Ferre, Guillaume</creator><creator>Rokhani, Fakhrul Z.</creator><creator>Al-Haddad, S. A. R.</creator><creator>Sali, Aduwati</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6748-2727</orcidid><orcidid>https://orcid.org/0000-0002-4436-897X</orcidid><orcidid>https://orcid.org/0000-0001-5522-5096</orcidid><orcidid>https://orcid.org/0000-0002-1692-6516</orcidid><orcidid>https://orcid.org/0000-0001-6449-8184</orcidid><orcidid>https://orcid.org/0000-0003-1327-525X</orcidid></search><sort><creationdate>2023</creationdate><title>LoRa and Rotating Polarization Wave: Physical Layer Principles and Performance Evaluation</title><author>Ahmad, Zaid ; Hashim, Shaiful J. ; Ferre, Guillaume ; Rokhani, Fakhrul Z. ; Al-Haddad, S. A. R. ; Sali, Aduwati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-54a60e944318d94ae51ccfb705bbb8d29bdf506b98b1a92ca64bfd10f5d52a173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer Science</topic><topic>Economics</topic><topic>Fading</topic><topic>Fading channels</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>link budget</topic><topic>LoRa</topic><topic>Low-power wide area networks</topic><topic>LPWAN</topic><topic>Multipath channels</topic><topic>multipath fading</topic><topic>Network reliability</topic><topic>Networking and Internet Architecture</topic><topic>Okumura-Hata</topic><topic>Performance evaluation</topic><topic>Physical layer</topic><topic>Polarization</topic><topic>polarization diversity</topic><topic>Reliability analysis</topic><topic>Rotation</topic><topic>RPW</topic><topic>Sensitivity</topic><topic>shadowing</topic><topic>Signal strength</topic><topic>Spread spectrum</topic><topic>Symbols</topic><topic>Wave propagation</topic><topic>Wide area networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Zaid</creatorcontrib><creatorcontrib>Hashim, Shaiful J.</creatorcontrib><creatorcontrib>Ferre, Guillaume</creatorcontrib><creatorcontrib>Rokhani, Fakhrul Z.</creatorcontrib><creatorcontrib>Al-Haddad, S. A. R.</creatorcontrib><creatorcontrib>Sali, Aduwati</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Zaid</au><au>Hashim, Shaiful J.</au><au>Ferre, Guillaume</au><au>Rokhani, Fakhrul Z.</au><au>Al-Haddad, S. A. R.</au><au>Sali, Aduwati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LoRa and Rotating Polarization Wave: Physical Layer Principles and Performance Evaluation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>14892</spage><epage>14905</epage><pages>14892-14905</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Link reliability and enhanced coverage are the primitive concerns of Low-Power Wide-Area Networks (LPWANs) for suitability to critical Internet of Things (IoT) applications. Reliability is limited by the destructive multipath propagation, data rate and sensitivity, that ultimately limits the coverage range. LoRa by far is the predominant LPWAN operating on unlicensed spectrum. Despite its robust Chirp Spread Spectrum (CSS) modulation, there is a severe degradation in its error performance particularly in hostile propagation environments, and an excessive reduction in coverage. Rotating Polarization Wave (RPW) is a potential LPWAN recently emerged to achieve a highly reliable IoT and Machine-to-Machine (M2M) communication. This is the first paper to provide comprehensive error performance comparison between LoRa and RPW. Okumura-Hata model is used for median path loss calculation. Shadowing and fast fading margins of RPW and LoRa are estimated. Effective gain of RPW is computed from error performance. Results have shown that LoRa offers a sensitivity of 23 dB higher than RPW under AWGN conditions. However, under fading conditions, RPW exhibits a sensitivity of 15 dB higher than LoRa. At a reference distance of 100 m, the maximum received signal strength of RPW is −39 dBm, which is 29 dB above LoRa. The maximum coverage distance attained by RPW is 15 km, which is 1.5 times of LoRa.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3242552</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6748-2727</orcidid><orcidid>https://orcid.org/0000-0002-4436-897X</orcidid><orcidid>https://orcid.org/0000-0001-5522-5096</orcidid><orcidid>https://orcid.org/0000-0002-1692-6516</orcidid><orcidid>https://orcid.org/0000-0001-6449-8184</orcidid><orcidid>https://orcid.org/0000-0003-1327-525X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.14892-14905
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10036429
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals
subjects Computer Science
Economics
Fading
Fading channels
Internet of Things
IoT
link budget
LoRa
Low-power wide area networks
LPWAN
Multipath channels
multipath fading
Network reliability
Networking and Internet Architecture
Okumura-Hata
Performance evaluation
Physical layer
Polarization
polarization diversity
Reliability analysis
Rotation
RPW
Sensitivity
shadowing
Signal strength
Spread spectrum
Symbols
Wave propagation
Wide area networks
title LoRa and Rotating Polarization Wave: Physical Layer Principles and Performance Evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LoRa%20and%20Rotating%20Polarization%20Wave:%20Physical%20Layer%20Principles%20and%20Performance%20Evaluation&rft.jtitle=IEEE%20access&rft.au=Ahmad,%20Zaid&rft.date=2023&rft.volume=11&rft.spage=14892&rft.epage=14905&rft.pages=14892-14905&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3242552&rft_dat=%3Cproquest_ieee_%3E2777580910%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777580910&rft_id=info:pmid/&rft_ieee_id=10036429&rft_doaj_id=oai_doaj_org_article_bb25fe937f674edb9b0563b0549e4bba&rfr_iscdi=true