Everett Map Construction for Modeling Static Hysteresis: Delaunay Based Interpolant Versus B-spline Surface

The Everett map is a component used by the Preisach model that stores hysteresis behavior. In magnetics it often contains the characterized magnetic properties of a soft-magnetic material. Fundamentally, the Everett map is created from scattered data points, obtained from a set of magnetic measureme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2023-05, Vol.59 (5), p.1-1
Hauptverfasser: Daniels, Bram, Overboom, Timo, Curti, Mitrofan, Lomonova, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 5
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 59
creator Daniels, Bram
Overboom, Timo
Curti, Mitrofan
Lomonova, Elena
description The Everett map is a component used by the Preisach model that stores hysteresis behavior. In magnetics it often contains the characterized magnetic properties of a soft-magnetic material. Fundamentally, the Everett map is created from scattered data points, obtained from a set of magnetic measurements, which must be interpolated to obtain a continuous map. The commonly adopted method to perform the interpolation is based on a Delaunay triangulation computation and subsequent polynomial or B-spline surface fit. However, this approach introduces artifacts in the modeled hysteresis results. Therefore, this work presents an alternative method to construct an artifact free Everett map, by reconstructing a set of measured hysteresis loops with a pre-processing algorithm, and representing the data with a scattered B-spline surface. When applied in the Preisach model, a set of test hysteresis loops was reproduced with high accuracy and without artifacts, compared to the commonly used Delaunay based interpolant.
doi_str_mv 10.1109/TMAG.2023.3241427
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10034669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10034669</ieee_id><sourcerecordid>2806216947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-9827a63f8fdcbbab19c33e54fc6978303796f86a9ef4d722c3b63e7210cd57083</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYj-ABMPTTwv9ot26w0QgQTiAfS66XanZnHdXduuCf_eJXDwNJmZ551JHoTuKRlRSvTTbjNZjBhhfMSZoIKpCzSgWtCEEKkv0YAQmiZaSHGNbkLY960YUzJAX_Nf8BAj3pgWz5o6RN_ZWDY1do3Hm6aAqqw_8TaaWFq8PITY46EMz_gFKtPV5oCnJkCBV3W_aZvK1BF_gA9dwNMktH0a8Lbzzli4RVfOVAHuznWI3l_nu9kyWb8tVrPJOrGcq5jolCkjuUtdYfPc5FT3cxgLZ6VWKSdcaelSaTQ4USjGLM8lB8UoscVYkZQP0ePpbuubnw5CzPZN5-v-ZcZSIhmVWqieoifK-iYEDy5rfflt_CGjJDs6zY5Os6PT7Oy0zzycMiUA_OMJF1Jq_gc1WHNe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806216947</pqid></control><display><type>article</type><title>Everett Map Construction for Modeling Static Hysteresis: Delaunay Based Interpolant Versus B-spline Surface</title><source>IEEE Electronic Library (IEL)</source><creator>Daniels, Bram ; Overboom, Timo ; Curti, Mitrofan ; Lomonova, Elena</creator><creatorcontrib>Daniels, Bram ; Overboom, Timo ; Curti, Mitrofan ; Lomonova, Elena</creatorcontrib><description>The Everett map is a component used by the Preisach model that stores hysteresis behavior. In magnetics it often contains the characterized magnetic properties of a soft-magnetic material. Fundamentally, the Everett map is created from scattered data points, obtained from a set of magnetic measurements, which must be interpolated to obtain a continuous map. The commonly adopted method to perform the interpolation is based on a Delaunay triangulation computation and subsequent polynomial or B-spline surface fit. However, this approach introduces artifacts in the modeled hysteresis results. Therefore, this work presents an alternative method to construct an artifact free Everett map, by reconstructing a set of measured hysteresis loops with a pre-processing algorithm, and representing the data with a scattered B-spline surface. When applied in the Preisach model, a set of test hysteresis loops was reproduced with high accuracy and without artifacts, compared to the commonly used Delaunay based interpolant.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2023.3241427</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; B spline functions ; B-spline surface ; Data models ; Data points ; Delaunay triangulation ; Everett map ; Hysteresis ; Hysteresis loops ; Interpolation ; Magnetic hysteresis ; Magnetic materials ; Magnetic measurement ; Magnetic properties ; Magnetics ; Magnetism ; Noise measurement ; Polynomials ; Preisach model ; Preisach's theory ; Scattered data points ; soft magnetic material ; Splines (mathematics) ; Weight measurement</subject><ispartof>IEEE transactions on magnetics, 2023-05, Vol.59 (5), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-9827a63f8fdcbbab19c33e54fc6978303796f86a9ef4d722c3b63e7210cd57083</citedby><cites>FETCH-LOGICAL-c337t-9827a63f8fdcbbab19c33e54fc6978303796f86a9ef4d722c3b63e7210cd57083</cites><orcidid>0000-0002-0084-4372 ; 0000-0002-0037-9327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10034669$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10034669$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Daniels, Bram</creatorcontrib><creatorcontrib>Overboom, Timo</creatorcontrib><creatorcontrib>Curti, Mitrofan</creatorcontrib><creatorcontrib>Lomonova, Elena</creatorcontrib><title>Everett Map Construction for Modeling Static Hysteresis: Delaunay Based Interpolant Versus B-spline Surface</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>The Everett map is a component used by the Preisach model that stores hysteresis behavior. In magnetics it often contains the characterized magnetic properties of a soft-magnetic material. Fundamentally, the Everett map is created from scattered data points, obtained from a set of magnetic measurements, which must be interpolated to obtain a continuous map. The commonly adopted method to perform the interpolation is based on a Delaunay triangulation computation and subsequent polynomial or B-spline surface fit. However, this approach introduces artifacts in the modeled hysteresis results. Therefore, this work presents an alternative method to construct an artifact free Everett map, by reconstructing a set of measured hysteresis loops with a pre-processing algorithm, and representing the data with a scattered B-spline surface. When applied in the Preisach model, a set of test hysteresis loops was reproduced with high accuracy and without artifacts, compared to the commonly used Delaunay based interpolant.</description><subject>Algorithms</subject><subject>B spline functions</subject><subject>B-spline surface</subject><subject>Data models</subject><subject>Data points</subject><subject>Delaunay triangulation</subject><subject>Everett map</subject><subject>Hysteresis</subject><subject>Hysteresis loops</subject><subject>Interpolation</subject><subject>Magnetic hysteresis</subject><subject>Magnetic materials</subject><subject>Magnetic measurement</subject><subject>Magnetic properties</subject><subject>Magnetics</subject><subject>Magnetism</subject><subject>Noise measurement</subject><subject>Polynomials</subject><subject>Preisach model</subject><subject>Preisach's theory</subject><subject>Scattered data points</subject><subject>soft magnetic material</subject><subject>Splines (mathematics)</subject><subject>Weight measurement</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYj-ABMPTTwv9ot26w0QgQTiAfS66XanZnHdXduuCf_eJXDwNJmZ551JHoTuKRlRSvTTbjNZjBhhfMSZoIKpCzSgWtCEEKkv0YAQmiZaSHGNbkLY960YUzJAX_Nf8BAj3pgWz5o6RN_ZWDY1do3Hm6aAqqw_8TaaWFq8PITY46EMz_gFKtPV5oCnJkCBV3W_aZvK1BF_gA9dwNMktH0a8Lbzzli4RVfOVAHuznWI3l_nu9kyWb8tVrPJOrGcq5jolCkjuUtdYfPc5FT3cxgLZ6VWKSdcaelSaTQ4USjGLM8lB8UoscVYkZQP0ePpbuubnw5CzPZN5-v-ZcZSIhmVWqieoifK-iYEDy5rfflt_CGjJDs6zY5Os6PT7Oy0zzycMiUA_OMJF1Jq_gc1WHNe</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Daniels, Bram</creator><creator>Overboom, Timo</creator><creator>Curti, Mitrofan</creator><creator>Lomonova, Elena</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0084-4372</orcidid><orcidid>https://orcid.org/0000-0002-0037-9327</orcidid></search><sort><creationdate>20230501</creationdate><title>Everett Map Construction for Modeling Static Hysteresis: Delaunay Based Interpolant Versus B-spline Surface</title><author>Daniels, Bram ; Overboom, Timo ; Curti, Mitrofan ; Lomonova, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-9827a63f8fdcbbab19c33e54fc6978303796f86a9ef4d722c3b63e7210cd57083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>B spline functions</topic><topic>B-spline surface</topic><topic>Data models</topic><topic>Data points</topic><topic>Delaunay triangulation</topic><topic>Everett map</topic><topic>Hysteresis</topic><topic>Hysteresis loops</topic><topic>Interpolation</topic><topic>Magnetic hysteresis</topic><topic>Magnetic materials</topic><topic>Magnetic measurement</topic><topic>Magnetic properties</topic><topic>Magnetics</topic><topic>Magnetism</topic><topic>Noise measurement</topic><topic>Polynomials</topic><topic>Preisach model</topic><topic>Preisach's theory</topic><topic>Scattered data points</topic><topic>soft magnetic material</topic><topic>Splines (mathematics)</topic><topic>Weight measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Daniels, Bram</creatorcontrib><creatorcontrib>Overboom, Timo</creatorcontrib><creatorcontrib>Curti, Mitrofan</creatorcontrib><creatorcontrib>Lomonova, Elena</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Daniels, Bram</au><au>Overboom, Timo</au><au>Curti, Mitrofan</au><au>Lomonova, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Everett Map Construction for Modeling Static Hysteresis: Delaunay Based Interpolant Versus B-spline Surface</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>59</volume><issue>5</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The Everett map is a component used by the Preisach model that stores hysteresis behavior. In magnetics it often contains the characterized magnetic properties of a soft-magnetic material. Fundamentally, the Everett map is created from scattered data points, obtained from a set of magnetic measurements, which must be interpolated to obtain a continuous map. The commonly adopted method to perform the interpolation is based on a Delaunay triangulation computation and subsequent polynomial or B-spline surface fit. However, this approach introduces artifacts in the modeled hysteresis results. Therefore, this work presents an alternative method to construct an artifact free Everett map, by reconstructing a set of measured hysteresis loops with a pre-processing algorithm, and representing the data with a scattered B-spline surface. When applied in the Preisach model, a set of test hysteresis loops was reproduced with high accuracy and without artifacts, compared to the commonly used Delaunay based interpolant.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2023.3241427</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0084-4372</orcidid><orcidid>https://orcid.org/0000-0002-0037-9327</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2023-05, Vol.59 (5), p.1-1
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_10034669
source IEEE Electronic Library (IEL)
subjects Algorithms
B spline functions
B-spline surface
Data models
Data points
Delaunay triangulation
Everett map
Hysteresis
Hysteresis loops
Interpolation
Magnetic hysteresis
Magnetic materials
Magnetic measurement
Magnetic properties
Magnetics
Magnetism
Noise measurement
Polynomials
Preisach model
Preisach's theory
Scattered data points
soft magnetic material
Splines (mathematics)
Weight measurement
title Everett Map Construction for Modeling Static Hysteresis: Delaunay Based Interpolant Versus B-spline Surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A40%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Everett%20Map%20Construction%20for%20Modeling%20Static%20Hysteresis:%20Delaunay%20Based%20Interpolant%20Versus%20B-spline%20Surface&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Daniels,%20Bram&rft.date=2023-05-01&rft.volume=59&rft.issue=5&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2023.3241427&rft_dat=%3Cproquest_RIE%3E2806216947%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806216947&rft_id=info:pmid/&rft_ieee_id=10034669&rfr_iscdi=true