Everett Map Construction for Modeling Static Hysteresis: Delaunay Based Interpolant Versus B-spline Surface
The Everett map is a component used by the Preisach model that stores hysteresis behavior. In magnetics it often contains the characterized magnetic properties of a soft-magnetic material. Fundamentally, the Everett map is created from scattered data points, obtained from a set of magnetic measureme...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2023-05, Vol.59 (5), p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 59 |
creator | Daniels, Bram Overboom, Timo Curti, Mitrofan Lomonova, Elena |
description | The Everett map is a component used by the Preisach model that stores hysteresis behavior. In magnetics it often contains the characterized magnetic properties of a soft-magnetic material. Fundamentally, the Everett map is created from scattered data points, obtained from a set of magnetic measurements, which must be interpolated to obtain a continuous map. The commonly adopted method to perform the interpolation is based on a Delaunay triangulation computation and subsequent polynomial or B-spline surface fit. However, this approach introduces artifacts in the modeled hysteresis results. Therefore, this work presents an alternative method to construct an artifact free Everett map, by reconstructing a set of measured hysteresis loops with a pre-processing algorithm, and representing the data with a scattered B-spline surface. When applied in the Preisach model, a set of test hysteresis loops was reproduced with high accuracy and without artifacts, compared to the commonly used Delaunay based interpolant. |
doi_str_mv | 10.1109/TMAG.2023.3241427 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10034669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10034669</ieee_id><sourcerecordid>2806216947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-9827a63f8fdcbbab19c33e54fc6978303796f86a9ef4d722c3b63e7210cd57083</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYj-ABMPTTwv9ot26w0QgQTiAfS66XanZnHdXduuCf_eJXDwNJmZ551JHoTuKRlRSvTTbjNZjBhhfMSZoIKpCzSgWtCEEKkv0YAQmiZaSHGNbkLY960YUzJAX_Nf8BAj3pgWz5o6RN_ZWDY1do3Hm6aAqqw_8TaaWFq8PITY46EMz_gFKtPV5oCnJkCBV3W_aZvK1BF_gA9dwNMktH0a8Lbzzli4RVfOVAHuznWI3l_nu9kyWb8tVrPJOrGcq5jolCkjuUtdYfPc5FT3cxgLZ6VWKSdcaelSaTQ4USjGLM8lB8UoscVYkZQP0ePpbuubnw5CzPZN5-v-ZcZSIhmVWqieoifK-iYEDy5rfflt_CGjJDs6zY5Os6PT7Oy0zzycMiUA_OMJF1Jq_gc1WHNe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806216947</pqid></control><display><type>article</type><title>Everett Map Construction for Modeling Static Hysteresis: Delaunay Based Interpolant Versus B-spline Surface</title><source>IEEE Electronic Library (IEL)</source><creator>Daniels, Bram ; Overboom, Timo ; Curti, Mitrofan ; Lomonova, Elena</creator><creatorcontrib>Daniels, Bram ; Overboom, Timo ; Curti, Mitrofan ; Lomonova, Elena</creatorcontrib><description>The Everett map is a component used by the Preisach model that stores hysteresis behavior. In magnetics it often contains the characterized magnetic properties of a soft-magnetic material. Fundamentally, the Everett map is created from scattered data points, obtained from a set of magnetic measurements, which must be interpolated to obtain a continuous map. The commonly adopted method to perform the interpolation is based on a Delaunay triangulation computation and subsequent polynomial or B-spline surface fit. However, this approach introduces artifacts in the modeled hysteresis results. Therefore, this work presents an alternative method to construct an artifact free Everett map, by reconstructing a set of measured hysteresis loops with a pre-processing algorithm, and representing the data with a scattered B-spline surface. When applied in the Preisach model, a set of test hysteresis loops was reproduced with high accuracy and without artifacts, compared to the commonly used Delaunay based interpolant.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2023.3241427</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; B spline functions ; B-spline surface ; Data models ; Data points ; Delaunay triangulation ; Everett map ; Hysteresis ; Hysteresis loops ; Interpolation ; Magnetic hysteresis ; Magnetic materials ; Magnetic measurement ; Magnetic properties ; Magnetics ; Magnetism ; Noise measurement ; Polynomials ; Preisach model ; Preisach's theory ; Scattered data points ; soft magnetic material ; Splines (mathematics) ; Weight measurement</subject><ispartof>IEEE transactions on magnetics, 2023-05, Vol.59 (5), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-9827a63f8fdcbbab19c33e54fc6978303796f86a9ef4d722c3b63e7210cd57083</citedby><cites>FETCH-LOGICAL-c337t-9827a63f8fdcbbab19c33e54fc6978303796f86a9ef4d722c3b63e7210cd57083</cites><orcidid>0000-0002-0084-4372 ; 0000-0002-0037-9327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10034669$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10034669$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Daniels, Bram</creatorcontrib><creatorcontrib>Overboom, Timo</creatorcontrib><creatorcontrib>Curti, Mitrofan</creatorcontrib><creatorcontrib>Lomonova, Elena</creatorcontrib><title>Everett Map Construction for Modeling Static Hysteresis: Delaunay Based Interpolant Versus B-spline Surface</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>The Everett map is a component used by the Preisach model that stores hysteresis behavior. In magnetics it often contains the characterized magnetic properties of a soft-magnetic material. Fundamentally, the Everett map is created from scattered data points, obtained from a set of magnetic measurements, which must be interpolated to obtain a continuous map. The commonly adopted method to perform the interpolation is based on a Delaunay triangulation computation and subsequent polynomial or B-spline surface fit. However, this approach introduces artifacts in the modeled hysteresis results. Therefore, this work presents an alternative method to construct an artifact free Everett map, by reconstructing a set of measured hysteresis loops with a pre-processing algorithm, and representing the data with a scattered B-spline surface. When applied in the Preisach model, a set of test hysteresis loops was reproduced with high accuracy and without artifacts, compared to the commonly used Delaunay based interpolant.</description><subject>Algorithms</subject><subject>B spline functions</subject><subject>B-spline surface</subject><subject>Data models</subject><subject>Data points</subject><subject>Delaunay triangulation</subject><subject>Everett map</subject><subject>Hysteresis</subject><subject>Hysteresis loops</subject><subject>Interpolation</subject><subject>Magnetic hysteresis</subject><subject>Magnetic materials</subject><subject>Magnetic measurement</subject><subject>Magnetic properties</subject><subject>Magnetics</subject><subject>Magnetism</subject><subject>Noise measurement</subject><subject>Polynomials</subject><subject>Preisach model</subject><subject>Preisach's theory</subject><subject>Scattered data points</subject><subject>soft magnetic material</subject><subject>Splines (mathematics)</subject><subject>Weight measurement</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYj-ABMPTTwv9ot26w0QgQTiAfS66XanZnHdXduuCf_eJXDwNJmZ551JHoTuKRlRSvTTbjNZjBhhfMSZoIKpCzSgWtCEEKkv0YAQmiZaSHGNbkLY960YUzJAX_Nf8BAj3pgWz5o6RN_ZWDY1do3Hm6aAqqw_8TaaWFq8PITY46EMz_gFKtPV5oCnJkCBV3W_aZvK1BF_gA9dwNMktH0a8Lbzzli4RVfOVAHuznWI3l_nu9kyWb8tVrPJOrGcq5jolCkjuUtdYfPc5FT3cxgLZ6VWKSdcaelSaTQ4USjGLM8lB8UoscVYkZQP0ePpbuubnw5CzPZN5-v-ZcZSIhmVWqieoifK-iYEDy5rfflt_CGjJDs6zY5Os6PT7Oy0zzycMiUA_OMJF1Jq_gc1WHNe</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Daniels, Bram</creator><creator>Overboom, Timo</creator><creator>Curti, Mitrofan</creator><creator>Lomonova, Elena</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0084-4372</orcidid><orcidid>https://orcid.org/0000-0002-0037-9327</orcidid></search><sort><creationdate>20230501</creationdate><title>Everett Map Construction for Modeling Static Hysteresis: Delaunay Based Interpolant Versus B-spline Surface</title><author>Daniels, Bram ; Overboom, Timo ; Curti, Mitrofan ; Lomonova, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-9827a63f8fdcbbab19c33e54fc6978303796f86a9ef4d722c3b63e7210cd57083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>B spline functions</topic><topic>B-spline surface</topic><topic>Data models</topic><topic>Data points</topic><topic>Delaunay triangulation</topic><topic>Everett map</topic><topic>Hysteresis</topic><topic>Hysteresis loops</topic><topic>Interpolation</topic><topic>Magnetic hysteresis</topic><topic>Magnetic materials</topic><topic>Magnetic measurement</topic><topic>Magnetic properties</topic><topic>Magnetics</topic><topic>Magnetism</topic><topic>Noise measurement</topic><topic>Polynomials</topic><topic>Preisach model</topic><topic>Preisach's theory</topic><topic>Scattered data points</topic><topic>soft magnetic material</topic><topic>Splines (mathematics)</topic><topic>Weight measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Daniels, Bram</creatorcontrib><creatorcontrib>Overboom, Timo</creatorcontrib><creatorcontrib>Curti, Mitrofan</creatorcontrib><creatorcontrib>Lomonova, Elena</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Daniels, Bram</au><au>Overboom, Timo</au><au>Curti, Mitrofan</au><au>Lomonova, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Everett Map Construction for Modeling Static Hysteresis: Delaunay Based Interpolant Versus B-spline Surface</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>59</volume><issue>5</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The Everett map is a component used by the Preisach model that stores hysteresis behavior. In magnetics it often contains the characterized magnetic properties of a soft-magnetic material. Fundamentally, the Everett map is created from scattered data points, obtained from a set of magnetic measurements, which must be interpolated to obtain a continuous map. The commonly adopted method to perform the interpolation is based on a Delaunay triangulation computation and subsequent polynomial or B-spline surface fit. However, this approach introduces artifacts in the modeled hysteresis results. Therefore, this work presents an alternative method to construct an artifact free Everett map, by reconstructing a set of measured hysteresis loops with a pre-processing algorithm, and representing the data with a scattered B-spline surface. When applied in the Preisach model, a set of test hysteresis loops was reproduced with high accuracy and without artifacts, compared to the commonly used Delaunay based interpolant.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2023.3241427</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0084-4372</orcidid><orcidid>https://orcid.org/0000-0002-0037-9327</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2023-05, Vol.59 (5), p.1-1 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_10034669 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms B spline functions B-spline surface Data models Data points Delaunay triangulation Everett map Hysteresis Hysteresis loops Interpolation Magnetic hysteresis Magnetic materials Magnetic measurement Magnetic properties Magnetics Magnetism Noise measurement Polynomials Preisach model Preisach's theory Scattered data points soft magnetic material Splines (mathematics) Weight measurement |
title | Everett Map Construction for Modeling Static Hysteresis: Delaunay Based Interpolant Versus B-spline Surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A40%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Everett%20Map%20Construction%20for%20Modeling%20Static%20Hysteresis:%20Delaunay%20Based%20Interpolant%20Versus%20B-spline%20Surface&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Daniels,%20Bram&rft.date=2023-05-01&rft.volume=59&rft.issue=5&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2023.3241427&rft_dat=%3Cproquest_RIE%3E2806216947%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806216947&rft_id=info:pmid/&rft_ieee_id=10034669&rfr_iscdi=true |