Recovery of High Order Statistics of PSK Signals based on Low-Rank Matrix Completion
High order statistics are useful for automatic modulation recognition and parameter estimations. In this paper, we cast the problem of recovering high order statistics of PSK signals taken from nonuniform compressive samples as a one of recovering a low-rank matrix from missing or corrupted observat...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Xing, Zhengli Zhou, Jie Ge, Zhan Huang, Guanqin Hu, Maohai |
description | High order statistics are useful for automatic modulation recognition and parameter estimations. In this paper, we cast the problem of recovering high order statistics of PSK signals taken from nonuniform compressive samples as a one of recovering a low-rank matrix from missing or corrupted observations. This is a new model to describe the high order statistics of PSK signals. Unlike traditional uniformly Nyquist samples, our method uses the advanced optimization technique, which is guaranteed to find the low-rank matrix by simultaneously fixing the missing entries. Simulation results demonstrate that our method achieves accurate estimates of the major portion of the high order statistics. The new technique can be used to fulfil automatic modulation recognition (AMR) and rough estimations of parameters. More specifically, low-rank structure of PSK signals is studied. In contrast to the existing l 1 optimization criteria, our method proposed here is computationally more efficient and provides high accuracy. |
doi_str_mv | 10.1109/ACCESS.2023.3241242 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10032503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10032503</ieee_id><doaj_id>oai_doaj_org_article_d7ea1ea6ee55475bb6a8878dc3806e7a</doaj_id><sourcerecordid>2776795092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-553ffd41c7f02a66f20240c3c959bc341efc54c342b5da9e93a6585c9395db3e3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVMAXwMES5xQ_Yjs-oqhQRBGIwNlynE1xaetih9ff45IKsZdd7c7MajRZdkrwmBCsLi6ralLXY4opGzNaEFrQvWxEiVA540zs_5sPs5MYFzhVmVZcjrKnR7D-A8I38h2auvkLug8tBFT3pnexdzZuDw_1LardfG2WETUmQov8Gs38Z_5o1q_ozvTBfaHKrzZL6J1fH2cHXYLCya4fZc9Xk6dqms_ur2-qy1luC6z6nHPWdW1BrOwwNUJ0yUKBLbOKq8aygkBneZEG2vDWKFDMCF5yq5jibcOAHWU3g27rzUJvgluZ8K29cfp34cNcm5A8LEG3EgwBIwA4LyRvGmHKUpatZSUWIE3SOh-0NsG_vUPs9cK_h61jTaUUUnGsaEKxAWWDjzFA9_eVYL1NQw9p6G0aepdGYp0NLAcA_xiYUY4Z-wH8EoS8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776795092</pqid></control><display><type>article</type><title>Recovery of High Order Statistics of PSK Signals based on Low-Rank Matrix Completion</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Xing, Zhengli ; Zhou, Jie ; Ge, Zhan ; Huang, Guanqin ; Hu, Maohai</creator><creatorcontrib>Xing, Zhengli ; Zhou, Jie ; Ge, Zhan ; Huang, Guanqin ; Hu, Maohai</creatorcontrib><description>High order statistics are useful for automatic modulation recognition and parameter estimations. In this paper, we cast the problem of recovering high order statistics of PSK signals taken from nonuniform compressive samples as a one of recovering a low-rank matrix from missing or corrupted observations. This is a new model to describe the high order statistics of PSK signals. Unlike traditional uniformly Nyquist samples, our method uses the advanced optimization technique, which is guaranteed to find the low-rank matrix by simultaneously fixing the missing entries. Simulation results demonstrate that our method achieves accurate estimates of the major portion of the high order statistics. The new technique can be used to fulfil automatic modulation recognition (AMR) and rough estimations of parameters. More specifically, low-rank structure of PSK signals is studied. In contrast to the existing l 1 optimization criteria, our method proposed here is computationally more efficient and provides high accuracy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3241242</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Automatic modulation recognition ; Binary phase shift keying ; Compressed Sensing ; Fourier transforms ; Frequency shift keying ; high order statistics ; low-rank matrix completion ; Modulation ; modulation recognition ; Optimization ; Parameter estimation ; parameter estimations ; Phase shift keying ; PSK signals ; Samples ; Statistics ; Symbols ; Task analysis</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-553ffd41c7f02a66f20240c3c959bc341efc54c342b5da9e93a6585c9395db3e3</citedby><cites>FETCH-LOGICAL-c409t-553ffd41c7f02a66f20240c3c959bc341efc54c342b5da9e93a6585c9395db3e3</cites><orcidid>0000-0002-4481-0983</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10032503$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Xing, Zhengli</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Ge, Zhan</creatorcontrib><creatorcontrib>Huang, Guanqin</creatorcontrib><creatorcontrib>Hu, Maohai</creatorcontrib><title>Recovery of High Order Statistics of PSK Signals based on Low-Rank Matrix Completion</title><title>IEEE access</title><addtitle>Access</addtitle><description>High order statistics are useful for automatic modulation recognition and parameter estimations. In this paper, we cast the problem of recovering high order statistics of PSK signals taken from nonuniform compressive samples as a one of recovering a low-rank matrix from missing or corrupted observations. This is a new model to describe the high order statistics of PSK signals. Unlike traditional uniformly Nyquist samples, our method uses the advanced optimization technique, which is guaranteed to find the low-rank matrix by simultaneously fixing the missing entries. Simulation results demonstrate that our method achieves accurate estimates of the major portion of the high order statistics. The new technique can be used to fulfil automatic modulation recognition (AMR) and rough estimations of parameters. More specifically, low-rank structure of PSK signals is studied. In contrast to the existing l 1 optimization criteria, our method proposed here is computationally more efficient and provides high accuracy.</description><subject>Automatic modulation recognition</subject><subject>Binary phase shift keying</subject><subject>Compressed Sensing</subject><subject>Fourier transforms</subject><subject>Frequency shift keying</subject><subject>high order statistics</subject><subject>low-rank matrix completion</subject><subject>Modulation</subject><subject>modulation recognition</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>parameter estimations</subject><subject>Phase shift keying</subject><subject>PSK signals</subject><subject>Samples</subject><subject>Statistics</subject><subject>Symbols</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVMAXwMES5xQ_Yjs-oqhQRBGIwNlynE1xaetih9ff45IKsZdd7c7MajRZdkrwmBCsLi6ralLXY4opGzNaEFrQvWxEiVA540zs_5sPs5MYFzhVmVZcjrKnR7D-A8I38h2auvkLug8tBFT3pnexdzZuDw_1LardfG2WETUmQov8Gs38Z_5o1q_ozvTBfaHKrzZL6J1fH2cHXYLCya4fZc9Xk6dqms_ur2-qy1luC6z6nHPWdW1BrOwwNUJ0yUKBLbOKq8aygkBneZEG2vDWKFDMCF5yq5jibcOAHWU3g27rzUJvgluZ8K29cfp34cNcm5A8LEG3EgwBIwA4LyRvGmHKUpatZSUWIE3SOh-0NsG_vUPs9cK_h61jTaUUUnGsaEKxAWWDjzFA9_eVYL1NQw9p6G0aepdGYp0NLAcA_xiYUY4Z-wH8EoS8</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Xing, Zhengli</creator><creator>Zhou, Jie</creator><creator>Ge, Zhan</creator><creator>Huang, Guanqin</creator><creator>Hu, Maohai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4481-0983</orcidid></search><sort><creationdate>20230101</creationdate><title>Recovery of High Order Statistics of PSK Signals based on Low-Rank Matrix Completion</title><author>Xing, Zhengli ; Zhou, Jie ; Ge, Zhan ; Huang, Guanqin ; Hu, Maohai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-553ffd41c7f02a66f20240c3c959bc341efc54c342b5da9e93a6585c9395db3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automatic modulation recognition</topic><topic>Binary phase shift keying</topic><topic>Compressed Sensing</topic><topic>Fourier transforms</topic><topic>Frequency shift keying</topic><topic>high order statistics</topic><topic>low-rank matrix completion</topic><topic>Modulation</topic><topic>modulation recognition</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>parameter estimations</topic><topic>Phase shift keying</topic><topic>PSK signals</topic><topic>Samples</topic><topic>Statistics</topic><topic>Symbols</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Zhengli</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Ge, Zhan</creatorcontrib><creatorcontrib>Huang, Guanqin</creatorcontrib><creatorcontrib>Hu, Maohai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Zhengli</au><au>Zhou, Jie</au><au>Ge, Zhan</au><au>Huang, Guanqin</au><au>Hu, Maohai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery of High Order Statistics of PSK Signals based on Low-Rank Matrix Completion</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>High order statistics are useful for automatic modulation recognition and parameter estimations. In this paper, we cast the problem of recovering high order statistics of PSK signals taken from nonuniform compressive samples as a one of recovering a low-rank matrix from missing or corrupted observations. This is a new model to describe the high order statistics of PSK signals. Unlike traditional uniformly Nyquist samples, our method uses the advanced optimization technique, which is guaranteed to find the low-rank matrix by simultaneously fixing the missing entries. Simulation results demonstrate that our method achieves accurate estimates of the major portion of the high order statistics. The new technique can be used to fulfil automatic modulation recognition (AMR) and rough estimations of parameters. More specifically, low-rank structure of PSK signals is studied. In contrast to the existing l 1 optimization criteria, our method proposed here is computationally more efficient and provides high accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3241242</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4481-0983</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10032503 |
source | DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | Automatic modulation recognition Binary phase shift keying Compressed Sensing Fourier transforms Frequency shift keying high order statistics low-rank matrix completion Modulation modulation recognition Optimization Parameter estimation parameter estimations Phase shift keying PSK signals Samples Statistics Symbols Task analysis |
title | Recovery of High Order Statistics of PSK Signals based on Low-Rank Matrix Completion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20of%20High%20Order%20Statistics%20of%20PSK%20Signals%20based%20on%20Low-Rank%20Matrix%20Completion&rft.jtitle=IEEE%20access&rft.au=Xing,%20Zhengli&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3241242&rft_dat=%3Cproquest_ieee_%3E2776795092%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776795092&rft_id=info:pmid/&rft_ieee_id=10032503&rft_doaj_id=oai_doaj_org_article_d7ea1ea6ee55475bb6a8878dc3806e7a&rfr_iscdi=true |