Nonvolatile Ferroelectric LiNbO3 Domain Wall Crossbar Memory

High-density domain wall memory based on crossbar architecture is a strong contender among next-generation high performance versatile memories due to its ultra-fast operation speed and excellent size scalability. Herein, we report 4 × 4 domain wall crossbar memory arrays fabricated on a LiNbO 3 sing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2023-03, Vol.44 (3), p.1-1
Hauptverfasser: Zhang, Wen Jie, Shen, Bo Wen, Fan, Hao Chen, Hu, Di, Jiang, An Quan, Jiang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 3
container_start_page 1
container_title IEEE electron device letters
container_volume 44
creator Zhang, Wen Jie
Shen, Bo Wen
Fan, Hao Chen
Hu, Di
Jiang, An Quan
Jiang, Jun
description High-density domain wall memory based on crossbar architecture is a strong contender among next-generation high performance versatile memories due to its ultra-fast operation speed and excellent size scalability. Herein, we report 4 × 4 domain wall crossbar memory arrays fabricated on a LiNbO 3 single crystal. Reversible creation and erasure of conducting domain walls between two antiparallel/parallel domains at bipolar write voltages enable the storage of digital "0" and "1" information. At the crosspoint of each word and bit lines, the memory cell can be accurately accessed, programmed and erased. The diode-like rectification of readout currents exhibited by all memory cells can inhibit read and write crosstalk. The electrical testing results in the crossbar memory array demonstrated the good stability of on/off currents and good uniformity of operating voltages, which can be reflected by the fact that the distribution of the coercive voltages is within 2.9 V and the "on"/ "off" current ratio is around 100 at a reading voltage of 3 V. Good data retention and fatigue resistance are also exhibited, making it possible to integrate domain wall random access memories in high density and reliability.
doi_str_mv 10.1109/LED.2023.3240762
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10032169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10032169</ieee_id><sourcerecordid>2779673703</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-7db164b93963b36aa65719ea585abb5a84b7518d11efa4379b7d21233519775a3</originalsourceid><addsrcrecordid>eNotjU1LAzEUAIMoWKt3Dx4WPG_Ny0vyNuBF-qHC2l4Uj8tLm0LKtqnZrdB_b6Ge5jLMCHEPcgQg3VM9nYyUVDhCpSVZdSEGYExVSmPxUgwkaSgRpL0WN123kRK0Jj0Qz_O0-00t97ENxSzknEIbln2Oy6KOc7_AYpK2HHfFN7dtMc6p6zzn4iNsUz7eiqs1t124--dQfM2mn-O3sl68vo9f6jIC6r6klQervUNn0aNltobABTaVYe8NV9qTgWoFENaskZynlQKFaMARGcaheDx39zn9HELXN5t0yLvTslFEzhKSxJP1cLZiCKHZ57jlfGxASlRgHf4Bc6ZRZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779673703</pqid></control><display><type>article</type><title>Nonvolatile Ferroelectric LiNbO3 Domain Wall Crossbar Memory</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Wen Jie ; Shen, Bo Wen ; Fan, Hao Chen ; Hu, Di ; Jiang, An Quan ; Jiang, Jun</creator><creatorcontrib>Zhang, Wen Jie ; Shen, Bo Wen ; Fan, Hao Chen ; Hu, Di ; Jiang, An Quan ; Jiang, Jun</creatorcontrib><description>High-density domain wall memory based on crossbar architecture is a strong contender among next-generation high performance versatile memories due to its ultra-fast operation speed and excellent size scalability. Herein, we report 4 × 4 domain wall crossbar memory arrays fabricated on a LiNbO 3 single crystal. Reversible creation and erasure of conducting domain walls between two antiparallel/parallel domains at bipolar write voltages enable the storage of digital "0" and "1" information. At the crosspoint of each word and bit lines, the memory cell can be accurately accessed, programmed and erased. The diode-like rectification of readout currents exhibited by all memory cells can inhibit read and write crosstalk. The electrical testing results in the crossbar memory array demonstrated the good stability of on/off currents and good uniformity of operating voltages, which can be reflected by the fact that the distribution of the coercive voltages is within 2.9 V and the "on"/ "off" current ratio is around 100 at a reading voltage of 3 V. Good data retention and fatigue resistance are also exhibited, making it possible to integrate domain wall random access memories in high density and reliability.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2023.3240762</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrays ; Coercivity ; crossbar array ; Crosstalk ; Crystals ; domain wall memory ; Domain walls ; Fatigue strength ; Ferroelectricity ; High density ; LiNbO&lt;sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;3 single crystal ; Lithium niobate ; Lithium niobates ; Memory management ; Nonvolatile memory ; polarization retention ; Random access memory ; Single crystals ; Switches</subject><ispartof>IEEE electron device letters, 2023-03, Vol.44 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0773-3093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10032169$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10032169$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Wen Jie</creatorcontrib><creatorcontrib>Shen, Bo Wen</creatorcontrib><creatorcontrib>Fan, Hao Chen</creatorcontrib><creatorcontrib>Hu, Di</creatorcontrib><creatorcontrib>Jiang, An Quan</creatorcontrib><creatorcontrib>Jiang, Jun</creatorcontrib><title>Nonvolatile Ferroelectric LiNbO3 Domain Wall Crossbar Memory</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>High-density domain wall memory based on crossbar architecture is a strong contender among next-generation high performance versatile memories due to its ultra-fast operation speed and excellent size scalability. Herein, we report 4 × 4 domain wall crossbar memory arrays fabricated on a LiNbO 3 single crystal. Reversible creation and erasure of conducting domain walls between two antiparallel/parallel domains at bipolar write voltages enable the storage of digital "0" and "1" information. At the crosspoint of each word and bit lines, the memory cell can be accurately accessed, programmed and erased. The diode-like rectification of readout currents exhibited by all memory cells can inhibit read and write crosstalk. The electrical testing results in the crossbar memory array demonstrated the good stability of on/off currents and good uniformity of operating voltages, which can be reflected by the fact that the distribution of the coercive voltages is within 2.9 V and the "on"/ "off" current ratio is around 100 at a reading voltage of 3 V. Good data retention and fatigue resistance are also exhibited, making it possible to integrate domain wall random access memories in high density and reliability.</description><subject>Arrays</subject><subject>Coercivity</subject><subject>crossbar array</subject><subject>Crosstalk</subject><subject>Crystals</subject><subject>domain wall memory</subject><subject>Domain walls</subject><subject>Fatigue strength</subject><subject>Ferroelectricity</subject><subject>High density</subject><subject>LiNbO&lt;sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;3 single crystal</subject><subject>Lithium niobate</subject><subject>Lithium niobates</subject><subject>Memory management</subject><subject>Nonvolatile memory</subject><subject>polarization retention</subject><subject>Random access memory</subject><subject>Single crystals</subject><subject>Switches</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjU1LAzEUAIMoWKt3Dx4WPG_Ny0vyNuBF-qHC2l4Uj8tLm0LKtqnZrdB_b6Ge5jLMCHEPcgQg3VM9nYyUVDhCpSVZdSEGYExVSmPxUgwkaSgRpL0WN123kRK0Jj0Qz_O0-00t97ENxSzknEIbln2Oy6KOc7_AYpK2HHfFN7dtMc6p6zzn4iNsUz7eiqs1t124--dQfM2mn-O3sl68vo9f6jIC6r6klQervUNn0aNltobABTaVYe8NV9qTgWoFENaskZynlQKFaMARGcaheDx39zn9HELXN5t0yLvTslFEzhKSxJP1cLZiCKHZ57jlfGxASlRgHf4Bc6ZRZA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Zhang, Wen Jie</creator><creator>Shen, Bo Wen</creator><creator>Fan, Hao Chen</creator><creator>Hu, Di</creator><creator>Jiang, An Quan</creator><creator>Jiang, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0773-3093</orcidid></search><sort><creationdate>20230301</creationdate><title>Nonvolatile Ferroelectric LiNbO3 Domain Wall Crossbar Memory</title><author>Zhang, Wen Jie ; Shen, Bo Wen ; Fan, Hao Chen ; Hu, Di ; Jiang, An Quan ; Jiang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-7db164b93963b36aa65719ea585abb5a84b7518d11efa4379b7d21233519775a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrays</topic><topic>Coercivity</topic><topic>crossbar array</topic><topic>Crosstalk</topic><topic>Crystals</topic><topic>domain wall memory</topic><topic>Domain walls</topic><topic>Fatigue strength</topic><topic>Ferroelectricity</topic><topic>High density</topic><topic>LiNbO&lt;sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;3 single crystal</topic><topic>Lithium niobate</topic><topic>Lithium niobates</topic><topic>Memory management</topic><topic>Nonvolatile memory</topic><topic>polarization retention</topic><topic>Random access memory</topic><topic>Single crystals</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wen Jie</creatorcontrib><creatorcontrib>Shen, Bo Wen</creatorcontrib><creatorcontrib>Fan, Hao Chen</creatorcontrib><creatorcontrib>Hu, Di</creatorcontrib><creatorcontrib>Jiang, An Quan</creatorcontrib><creatorcontrib>Jiang, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Wen Jie</au><au>Shen, Bo Wen</au><au>Fan, Hao Chen</au><au>Hu, Di</au><au>Jiang, An Quan</au><au>Jiang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonvolatile Ferroelectric LiNbO3 Domain Wall Crossbar Memory</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>44</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>High-density domain wall memory based on crossbar architecture is a strong contender among next-generation high performance versatile memories due to its ultra-fast operation speed and excellent size scalability. Herein, we report 4 × 4 domain wall crossbar memory arrays fabricated on a LiNbO 3 single crystal. Reversible creation and erasure of conducting domain walls between two antiparallel/parallel domains at bipolar write voltages enable the storage of digital "0" and "1" information. At the crosspoint of each word and bit lines, the memory cell can be accurately accessed, programmed and erased. The diode-like rectification of readout currents exhibited by all memory cells can inhibit read and write crosstalk. The electrical testing results in the crossbar memory array demonstrated the good stability of on/off currents and good uniformity of operating voltages, which can be reflected by the fact that the distribution of the coercive voltages is within 2.9 V and the "on"/ "off" current ratio is around 100 at a reading voltage of 3 V. Good data retention and fatigue resistance are also exhibited, making it possible to integrate domain wall random access memories in high density and reliability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2023.3240762</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0773-3093</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2023-03, Vol.44 (3), p.1-1
issn 0741-3106
1558-0563
language eng
recordid cdi_ieee_primary_10032169
source IEEE Electronic Library (IEL)
subjects Arrays
Coercivity
crossbar array
Crosstalk
Crystals
domain wall memory
Domain walls
Fatigue strength
Ferroelectricity
High density
LiNbO<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">3 single crystal
Lithium niobate
Lithium niobates
Memory management
Nonvolatile memory
polarization retention
Random access memory
Single crystals
Switches
title Nonvolatile Ferroelectric LiNbO3 Domain Wall Crossbar Memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonvolatile%20Ferroelectric%20LiNbO3%20Domain%20Wall%20Crossbar%20Memory&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Zhang,%20Wen%20Jie&rft.date=2023-03-01&rft.volume=44&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2023.3240762&rft_dat=%3Cproquest_RIE%3E2779673703%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779673703&rft_id=info:pmid/&rft_ieee_id=10032169&rfr_iscdi=true