Nonvolatile Ferroelectric LiNbO3 Domain Wall Crossbar Memory
High-density domain wall memory based on crossbar architecture is a strong contender among next-generation high performance versatile memories due to its ultra-fast operation speed and excellent size scalability. Herein, we report 4 × 4 domain wall crossbar memory arrays fabricated on a LiNbO 3 sing...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2023-03, Vol.44 (3), p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE electron device letters |
container_volume | 44 |
creator | Zhang, Wen Jie Shen, Bo Wen Fan, Hao Chen Hu, Di Jiang, An Quan Jiang, Jun |
description | High-density domain wall memory based on crossbar architecture is a strong contender among next-generation high performance versatile memories due to its ultra-fast operation speed and excellent size scalability. Herein, we report 4 × 4 domain wall crossbar memory arrays fabricated on a LiNbO 3 single crystal. Reversible creation and erasure of conducting domain walls between two antiparallel/parallel domains at bipolar write voltages enable the storage of digital "0" and "1" information. At the crosspoint of each word and bit lines, the memory cell can be accurately accessed, programmed and erased. The diode-like rectification of readout currents exhibited by all memory cells can inhibit read and write crosstalk. The electrical testing results in the crossbar memory array demonstrated the good stability of on/off currents and good uniformity of operating voltages, which can be reflected by the fact that the distribution of the coercive voltages is within 2.9 V and the "on"/ "off" current ratio is around 100 at a reading voltage of 3 V. Good data retention and fatigue resistance are also exhibited, making it possible to integrate domain wall random access memories in high density and reliability. |
doi_str_mv | 10.1109/LED.2023.3240762 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10032169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10032169</ieee_id><sourcerecordid>2779673703</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-7db164b93963b36aa65719ea585abb5a84b7518d11efa4379b7d21233519775a3</originalsourceid><addsrcrecordid>eNotjU1LAzEUAIMoWKt3Dx4WPG_Ny0vyNuBF-qHC2l4Uj8tLm0LKtqnZrdB_b6Ge5jLMCHEPcgQg3VM9nYyUVDhCpSVZdSEGYExVSmPxUgwkaSgRpL0WN123kRK0Jj0Qz_O0-00t97ENxSzknEIbln2Oy6KOc7_AYpK2HHfFN7dtMc6p6zzn4iNsUz7eiqs1t124--dQfM2mn-O3sl68vo9f6jIC6r6klQervUNn0aNltobABTaVYe8NV9qTgWoFENaskZynlQKFaMARGcaheDx39zn9HELXN5t0yLvTslFEzhKSxJP1cLZiCKHZ57jlfGxASlRgHf4Bc6ZRZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779673703</pqid></control><display><type>article</type><title>Nonvolatile Ferroelectric LiNbO3 Domain Wall Crossbar Memory</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Wen Jie ; Shen, Bo Wen ; Fan, Hao Chen ; Hu, Di ; Jiang, An Quan ; Jiang, Jun</creator><creatorcontrib>Zhang, Wen Jie ; Shen, Bo Wen ; Fan, Hao Chen ; Hu, Di ; Jiang, An Quan ; Jiang, Jun</creatorcontrib><description>High-density domain wall memory based on crossbar architecture is a strong contender among next-generation high performance versatile memories due to its ultra-fast operation speed and excellent size scalability. Herein, we report 4 × 4 domain wall crossbar memory arrays fabricated on a LiNbO 3 single crystal. Reversible creation and erasure of conducting domain walls between two antiparallel/parallel domains at bipolar write voltages enable the storage of digital "0" and "1" information. At the crosspoint of each word and bit lines, the memory cell can be accurately accessed, programmed and erased. The diode-like rectification of readout currents exhibited by all memory cells can inhibit read and write crosstalk. The electrical testing results in the crossbar memory array demonstrated the good stability of on/off currents and good uniformity of operating voltages, which can be reflected by the fact that the distribution of the coercive voltages is within 2.9 V and the "on"/ "off" current ratio is around 100 at a reading voltage of 3 V. Good data retention and fatigue resistance are also exhibited, making it possible to integrate domain wall random access memories in high density and reliability.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2023.3240762</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrays ; Coercivity ; crossbar array ; Crosstalk ; Crystals ; domain wall memory ; Domain walls ; Fatigue strength ; Ferroelectricity ; High density ; LiNbO<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">3 single crystal ; Lithium niobate ; Lithium niobates ; Memory management ; Nonvolatile memory ; polarization retention ; Random access memory ; Single crystals ; Switches</subject><ispartof>IEEE electron device letters, 2023-03, Vol.44 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0773-3093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10032169$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10032169$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Wen Jie</creatorcontrib><creatorcontrib>Shen, Bo Wen</creatorcontrib><creatorcontrib>Fan, Hao Chen</creatorcontrib><creatorcontrib>Hu, Di</creatorcontrib><creatorcontrib>Jiang, An Quan</creatorcontrib><creatorcontrib>Jiang, Jun</creatorcontrib><title>Nonvolatile Ferroelectric LiNbO3 Domain Wall Crossbar Memory</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>High-density domain wall memory based on crossbar architecture is a strong contender among next-generation high performance versatile memories due to its ultra-fast operation speed and excellent size scalability. Herein, we report 4 × 4 domain wall crossbar memory arrays fabricated on a LiNbO 3 single crystal. Reversible creation and erasure of conducting domain walls between two antiparallel/parallel domains at bipolar write voltages enable the storage of digital "0" and "1" information. At the crosspoint of each word and bit lines, the memory cell can be accurately accessed, programmed and erased. The diode-like rectification of readout currents exhibited by all memory cells can inhibit read and write crosstalk. The electrical testing results in the crossbar memory array demonstrated the good stability of on/off currents and good uniformity of operating voltages, which can be reflected by the fact that the distribution of the coercive voltages is within 2.9 V and the "on"/ "off" current ratio is around 100 at a reading voltage of 3 V. Good data retention and fatigue resistance are also exhibited, making it possible to integrate domain wall random access memories in high density and reliability.</description><subject>Arrays</subject><subject>Coercivity</subject><subject>crossbar array</subject><subject>Crosstalk</subject><subject>Crystals</subject><subject>domain wall memory</subject><subject>Domain walls</subject><subject>Fatigue strength</subject><subject>Ferroelectricity</subject><subject>High density</subject><subject>LiNbO<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">3 single crystal</subject><subject>Lithium niobate</subject><subject>Lithium niobates</subject><subject>Memory management</subject><subject>Nonvolatile memory</subject><subject>polarization retention</subject><subject>Random access memory</subject><subject>Single crystals</subject><subject>Switches</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjU1LAzEUAIMoWKt3Dx4WPG_Ny0vyNuBF-qHC2l4Uj8tLm0LKtqnZrdB_b6Ge5jLMCHEPcgQg3VM9nYyUVDhCpSVZdSEGYExVSmPxUgwkaSgRpL0WN123kRK0Jj0Qz_O0-00t97ENxSzknEIbln2Oy6KOc7_AYpK2HHfFN7dtMc6p6zzn4iNsUz7eiqs1t124--dQfM2mn-O3sl68vo9f6jIC6r6klQervUNn0aNltobABTaVYe8NV9qTgWoFENaskZynlQKFaMARGcaheDx39zn9HELXN5t0yLvTslFEzhKSxJP1cLZiCKHZ57jlfGxASlRgHf4Bc6ZRZA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Zhang, Wen Jie</creator><creator>Shen, Bo Wen</creator><creator>Fan, Hao Chen</creator><creator>Hu, Di</creator><creator>Jiang, An Quan</creator><creator>Jiang, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0773-3093</orcidid></search><sort><creationdate>20230301</creationdate><title>Nonvolatile Ferroelectric LiNbO3 Domain Wall Crossbar Memory</title><author>Zhang, Wen Jie ; Shen, Bo Wen ; Fan, Hao Chen ; Hu, Di ; Jiang, An Quan ; Jiang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-7db164b93963b36aa65719ea585abb5a84b7518d11efa4379b7d21233519775a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrays</topic><topic>Coercivity</topic><topic>crossbar array</topic><topic>Crosstalk</topic><topic>Crystals</topic><topic>domain wall memory</topic><topic>Domain walls</topic><topic>Fatigue strength</topic><topic>Ferroelectricity</topic><topic>High density</topic><topic>LiNbO<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">3 single crystal</topic><topic>Lithium niobate</topic><topic>Lithium niobates</topic><topic>Memory management</topic><topic>Nonvolatile memory</topic><topic>polarization retention</topic><topic>Random access memory</topic><topic>Single crystals</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wen Jie</creatorcontrib><creatorcontrib>Shen, Bo Wen</creatorcontrib><creatorcontrib>Fan, Hao Chen</creatorcontrib><creatorcontrib>Hu, Di</creatorcontrib><creatorcontrib>Jiang, An Quan</creatorcontrib><creatorcontrib>Jiang, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Wen Jie</au><au>Shen, Bo Wen</au><au>Fan, Hao Chen</au><au>Hu, Di</au><au>Jiang, An Quan</au><au>Jiang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonvolatile Ferroelectric LiNbO3 Domain Wall Crossbar Memory</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>44</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>High-density domain wall memory based on crossbar architecture is a strong contender among next-generation high performance versatile memories due to its ultra-fast operation speed and excellent size scalability. Herein, we report 4 × 4 domain wall crossbar memory arrays fabricated on a LiNbO 3 single crystal. Reversible creation and erasure of conducting domain walls between two antiparallel/parallel domains at bipolar write voltages enable the storage of digital "0" and "1" information. At the crosspoint of each word and bit lines, the memory cell can be accurately accessed, programmed and erased. The diode-like rectification of readout currents exhibited by all memory cells can inhibit read and write crosstalk. The electrical testing results in the crossbar memory array demonstrated the good stability of on/off currents and good uniformity of operating voltages, which can be reflected by the fact that the distribution of the coercive voltages is within 2.9 V and the "on"/ "off" current ratio is around 100 at a reading voltage of 3 V. Good data retention and fatigue resistance are also exhibited, making it possible to integrate domain wall random access memories in high density and reliability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2023.3240762</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0773-3093</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2023-03, Vol.44 (3), p.1-1 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_ieee_primary_10032169 |
source | IEEE Electronic Library (IEL) |
subjects | Arrays Coercivity crossbar array Crosstalk Crystals domain wall memory Domain walls Fatigue strength Ferroelectricity High density LiNbO<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">3 single crystal Lithium niobate Lithium niobates Memory management Nonvolatile memory polarization retention Random access memory Single crystals Switches |
title | Nonvolatile Ferroelectric LiNbO3 Domain Wall Crossbar Memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonvolatile%20Ferroelectric%20LiNbO3%20Domain%20Wall%20Crossbar%20Memory&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Zhang,%20Wen%20Jie&rft.date=2023-03-01&rft.volume=44&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2023.3240762&rft_dat=%3Cproquest_RIE%3E2779673703%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779673703&rft_id=info:pmid/&rft_ieee_id=10032169&rfr_iscdi=true |