Robust Energy Management System with Safe Reinforcement Learning Using Short-Horizon Forecasts

In this letter, we study an energy management system (EMS) with an inconsistent energy supply that aims to minimize energy costs while avoiding failing to satisfy energy demands. To this end, we propose a robust EMS algorithm based on safe reinforcement learning which can effectively exploit short-h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2023-05, Vol.14 (3), p.1-1
Hauptverfasser: Hong, Seong-Hyun, Lee, Hyun-Suk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 3
container_start_page 1
container_title IEEE transactions on smart grid
container_volume 14
creator Hong, Seong-Hyun
Lee, Hyun-Suk
description In this letter, we study an energy management system (EMS) with an inconsistent energy supply that aims to minimize energy costs while avoiding failing to satisfy energy demands. To this end, we propose a robust EMS algorithm based on safe reinforcement learning which can effectively exploit short-horizon forecasts on system uncertainties. We show via experimental results using real datasets that our robust EMS algorithm outperforms other state-of-the-art algorithms in terms of both robustness and cost-efficiency thanks to its capability of utilizing short-horizon forecasts.
doi_str_mv 10.1109/TSG.2023.3240588
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10029882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10029882</ieee_id><sourcerecordid>2804113136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-b1919727602753aea43f6fdfdc90cb3cf28df493a97df535c74eff86c60e91973</originalsourceid><addsrcrecordid>eNpNkMtLAzEQxoMoWGrvHjwEPG_NY185SulDqAjd9mpIs5N2i01qkiL1r3eXFXEOMwPzfd_AD6F7SsaUEvG0ruZjRhgfc5aSrCyv0ICKVCSc5PT6b8_4LRqFcCBtcc5zJgbofeW25xDx1ILfXfCrsmoHR7ARV5cQ4Yi_mrjHlTKAV9BY47zuz0tQ3jZ2hzeh69Xe-ZgsnG--ncUz50GrEMMdujHqI8Dodw7RZjZdTxbJ8m3-MnleJpoJFpMtFVQUrMgJKzKuQKXc5KY2tRZEb7k2rKxNKrgSRW0ynukiBWPKXOcEOicfosc-9-Td5xlClAd39rZ9KVlJUko55XmrIr1KexeCByNPvjkqf5GUyA6kbEHKDqT8BdlaHnpLAwD_5ISJsmT8BwS6b2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804113136</pqid></control><display><type>article</type><title>Robust Energy Management System with Safe Reinforcement Learning Using Short-Horizon Forecasts</title><source>IEEE Electronic Library (IEL)</source><creator>Hong, Seong-Hyun ; Lee, Hyun-Suk</creator><creatorcontrib>Hong, Seong-Hyun ; Lee, Hyun-Suk</creatorcontrib><description>In this letter, we study an energy management system (EMS) with an inconsistent energy supply that aims to minimize energy costs while avoiding failing to satisfy energy demands. To this end, we propose a robust EMS algorithm based on safe reinforcement learning which can effectively exploit short-horizon forecasts on system uncertainties. We show via experimental results using real datasets that our robust EMS algorithm outperforms other state-of-the-art algorithms in terms of both robustness and cost-efficiency thanks to its capability of utilizing short-horizon forecasts.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2023.3240588</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Batteries ; Costs ; Energy costs ; Energy management ; Energy management system ; forecasting ; Horizon ; Reinforcement learning ; Renewable energy sources ; robust scheduling ; Robustness ; safe reinforcement learning ; Uncertainty</subject><ispartof>IEEE transactions on smart grid, 2023-05, Vol.14 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-b1919727602753aea43f6fdfdc90cb3cf28df493a97df535c74eff86c60e91973</citedby><cites>FETCH-LOGICAL-c292t-b1919727602753aea43f6fdfdc90cb3cf28df493a97df535c74eff86c60e91973</cites><orcidid>0000-0001-5885-1711 ; 0000-0002-1917-7733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10029882$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10029882$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hong, Seong-Hyun</creatorcontrib><creatorcontrib>Lee, Hyun-Suk</creatorcontrib><title>Robust Energy Management System with Safe Reinforcement Learning Using Short-Horizon Forecasts</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>In this letter, we study an energy management system (EMS) with an inconsistent energy supply that aims to minimize energy costs while avoiding failing to satisfy energy demands. To this end, we propose a robust EMS algorithm based on safe reinforcement learning which can effectively exploit short-horizon forecasts on system uncertainties. We show via experimental results using real datasets that our robust EMS algorithm outperforms other state-of-the-art algorithms in terms of both robustness and cost-efficiency thanks to its capability of utilizing short-horizon forecasts.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>Costs</subject><subject>Energy costs</subject><subject>Energy management</subject><subject>Energy management system</subject><subject>forecasting</subject><subject>Horizon</subject><subject>Reinforcement learning</subject><subject>Renewable energy sources</subject><subject>robust scheduling</subject><subject>Robustness</subject><subject>safe reinforcement learning</subject><subject>Uncertainty</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtLAzEQxoMoWGrvHjwEPG_NY185SulDqAjd9mpIs5N2i01qkiL1r3eXFXEOMwPzfd_AD6F7SsaUEvG0ruZjRhgfc5aSrCyv0ICKVCSc5PT6b8_4LRqFcCBtcc5zJgbofeW25xDx1ILfXfCrsmoHR7ARV5cQ4Yi_mrjHlTKAV9BY47zuz0tQ3jZ2hzeh69Xe-ZgsnG--ncUz50GrEMMdujHqI8Dodw7RZjZdTxbJ8m3-MnleJpoJFpMtFVQUrMgJKzKuQKXc5KY2tRZEb7k2rKxNKrgSRW0ynukiBWPKXOcEOicfosc-9-Td5xlClAd39rZ9KVlJUko55XmrIr1KexeCByNPvjkqf5GUyA6kbEHKDqT8BdlaHnpLAwD_5ISJsmT8BwS6b2Q</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Hong, Seong-Hyun</creator><creator>Lee, Hyun-Suk</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5885-1711</orcidid><orcidid>https://orcid.org/0000-0002-1917-7733</orcidid></search><sort><creationdate>20230501</creationdate><title>Robust Energy Management System with Safe Reinforcement Learning Using Short-Horizon Forecasts</title><author>Hong, Seong-Hyun ; Lee, Hyun-Suk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-b1919727602753aea43f6fdfdc90cb3cf28df493a97df535c74eff86c60e91973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>Costs</topic><topic>Energy costs</topic><topic>Energy management</topic><topic>Energy management system</topic><topic>forecasting</topic><topic>Horizon</topic><topic>Reinforcement learning</topic><topic>Renewable energy sources</topic><topic>robust scheduling</topic><topic>Robustness</topic><topic>safe reinforcement learning</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Seong-Hyun</creatorcontrib><creatorcontrib>Lee, Hyun-Suk</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hong, Seong-Hyun</au><au>Lee, Hyun-Suk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Energy Management System with Safe Reinforcement Learning Using Short-Horizon Forecasts</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>14</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>In this letter, we study an energy management system (EMS) with an inconsistent energy supply that aims to minimize energy costs while avoiding failing to satisfy energy demands. To this end, we propose a robust EMS algorithm based on safe reinforcement learning which can effectively exploit short-horizon forecasts on system uncertainties. We show via experimental results using real datasets that our robust EMS algorithm outperforms other state-of-the-art algorithms in terms of both robustness and cost-efficiency thanks to its capability of utilizing short-horizon forecasts.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2023.3240588</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5885-1711</orcidid><orcidid>https://orcid.org/0000-0002-1917-7733</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2023-05, Vol.14 (3), p.1-1
issn 1949-3053
1949-3061
language eng
recordid cdi_ieee_primary_10029882
source IEEE Electronic Library (IEL)
subjects Algorithms
Batteries
Costs
Energy costs
Energy management
Energy management system
forecasting
Horizon
Reinforcement learning
Renewable energy sources
robust scheduling
Robustness
safe reinforcement learning
Uncertainty
title Robust Energy Management System with Safe Reinforcement Learning Using Short-Horizon Forecasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Energy%20Management%20System%20with%20Safe%20Reinforcement%20Learning%20Using%20Short-Horizon%20Forecasts&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Hong,%20Seong-Hyun&rft.date=2023-05-01&rft.volume=14&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2023.3240588&rft_dat=%3Cproquest_RIE%3E2804113136%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2804113136&rft_id=info:pmid/&rft_ieee_id=10029882&rfr_iscdi=true