Spatio-Temporal Graph Convolutional Neural Networks for Physics-Aware Grid Learning Algorithms

This paper proposes novel architectures for spatio-temporal graph convolutional and recurrent neural networks whose structure is inspired by the physics of power systems. The key insight behind our design consists in deriving the so-called graph shift operator (GSO), which is the cornerstone of Grap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2023-09, Vol.14 (5), p.1-1
Hauptverfasser: Wu, Tong, Carreno, Ignacio Losada, Scaglione, Anna, Arnold, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 5
container_start_page 1
container_title IEEE transactions on smart grid
container_volume 14
creator Wu, Tong
Carreno, Ignacio Losada
Scaglione, Anna
Arnold, Daniel
description This paper proposes novel architectures for spatio-temporal graph convolutional and recurrent neural networks whose structure is inspired by the physics of power systems. The key insight behind our design consists in deriving the so-called graph shift operator (GSO), which is the cornerstone of Graph Convolutional Neural Network (GCN) and Graph Recursive Neural Network (GRN) designs, from the power flow equations. We demonstrate the effectiveness of the proposed architectures in two applications: in forecasting the power grid state and in finding a stochastic policy for foresighted voltage control using deep reinforcement learning. Since our design can be adopted in single-phase as well as three-phase unbalanced systems, we test our architecture in both environments. For state forecasting experiments we consider the single phase IEEE 118-bus case systems; for voltage regulation, we illustrate the performance of deep reinforcement learning policy on the unbalanced three-phase IEEE 123-bus feeder system. In both cases the physics based GCN and GRN learning algorithms we propose outperform the state of the art.
doi_str_mv 10.1109/TSG.2023.3239740
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10025850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10025850</ieee_id><sourcerecordid>2855722720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c207t-6e3e998e81afa0fec19d278a42953c67a798d0b6214acb175f21f2a4f44b13f23</originalsourceid><addsrcrecordid>eNpNkEFPAjEQhRujiQS5e_CwiefFdtput0dCFE2ImoBXm7K0sLhs13YXwr-3CDHO5U1m3ptMPoRuCR4SguXDfDYZAgY6pEClYPgC9YhkMqU4I5d_PafXaBDCBseilGYge-hz1ui2dOncbBvndZVMvG7WydjVO1d1cVPH2avp_K-0e-e_QmKdT97Xh1AWIR3ttTcxVS6TqdG-LutVMqpWzpftehtu0JXVVTCDs_bRx9PjfPycTt8mL-PRNC0AizbNDDVS5iYn2mpsTUHkEkSuGUhOi0xoIfMlXmRAmC4WRHALxIJmlrEFoRZoH92f7jbefXcmtGrjOh9_DwpyzgWAABxd-OQqvAvBG6saX261PyiC1RGkiiDVEaQ6g4yRu1OkNMb8s2PgOcf0B-xebww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2855722720</pqid></control><display><type>article</type><title>Spatio-Temporal Graph Convolutional Neural Networks for Physics-Aware Grid Learning Algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Tong ; Carreno, Ignacio Losada ; Scaglione, Anna ; Arnold, Daniel</creator><creatorcontrib>Wu, Tong ; Carreno, Ignacio Losada ; Scaglione, Anna ; Arnold, Daniel</creatorcontrib><description>This paper proposes novel architectures for spatio-temporal graph convolutional and recurrent neural networks whose structure is inspired by the physics of power systems. The key insight behind our design consists in deriving the so-called graph shift operator (GSO), which is the cornerstone of Graph Convolutional Neural Network (GCN) and Graph Recursive Neural Network (GRN) designs, from the power flow equations. We demonstrate the effectiveness of the proposed architectures in two applications: in forecasting the power grid state and in finding a stochastic policy for foresighted voltage control using deep reinforcement learning. Since our design can be adopted in single-phase as well as three-phase unbalanced systems, we test our architecture in both environments. For state forecasting experiments we consider the single phase IEEE 118-bus case systems; for voltage regulation, we illustrate the performance of deep reinforcement learning policy on the unbalanced three-phase IEEE 123-bus feeder system. In both cases the physics based GCN and GRN learning algorithms we propose outperform the state of the art.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2023.3239740</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Convolutional neural networks ; Cyber-Physical Attacks ; Deep learning ; Deep Reinforcement Learning ; Electric potential ; Electric power systems ; Flow equations ; Forecasting ; GCN ; Graph neural networks ; Machine learning ; Neural networks ; Physics ; Power flow ; Power system stability ; Recurrent neural networks ; Reinforcement learning ; State estimation ; Unbalance ; Voltage ; Voltage control</subject><ispartof>IEEE transactions on smart grid, 2023-09, Vol.14 (5), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c207t-6e3e998e81afa0fec19d278a42953c67a798d0b6214acb175f21f2a4f44b13f23</citedby><cites>FETCH-LOGICAL-c207t-6e3e998e81afa0fec19d278a42953c67a798d0b6214acb175f21f2a4f44b13f23</cites><orcidid>0000-0001-8897-1132 ; 0000-0002-7474-6943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10025850$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10025850$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Tong</creatorcontrib><creatorcontrib>Carreno, Ignacio Losada</creatorcontrib><creatorcontrib>Scaglione, Anna</creatorcontrib><creatorcontrib>Arnold, Daniel</creatorcontrib><title>Spatio-Temporal Graph Convolutional Neural Networks for Physics-Aware Grid Learning Algorithms</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>This paper proposes novel architectures for spatio-temporal graph convolutional and recurrent neural networks whose structure is inspired by the physics of power systems. The key insight behind our design consists in deriving the so-called graph shift operator (GSO), which is the cornerstone of Graph Convolutional Neural Network (GCN) and Graph Recursive Neural Network (GRN) designs, from the power flow equations. We demonstrate the effectiveness of the proposed architectures in two applications: in forecasting the power grid state and in finding a stochastic policy for foresighted voltage control using deep reinforcement learning. Since our design can be adopted in single-phase as well as three-phase unbalanced systems, we test our architecture in both environments. For state forecasting experiments we consider the single phase IEEE 118-bus case systems; for voltage regulation, we illustrate the performance of deep reinforcement learning policy on the unbalanced three-phase IEEE 123-bus feeder system. In both cases the physics based GCN and GRN learning algorithms we propose outperform the state of the art.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Convolutional neural networks</subject><subject>Cyber-Physical Attacks</subject><subject>Deep learning</subject><subject>Deep Reinforcement Learning</subject><subject>Electric potential</subject><subject>Electric power systems</subject><subject>Flow equations</subject><subject>Forecasting</subject><subject>GCN</subject><subject>Graph neural networks</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Power flow</subject><subject>Power system stability</subject><subject>Recurrent neural networks</subject><subject>Reinforcement learning</subject><subject>State estimation</subject><subject>Unbalance</subject><subject>Voltage</subject><subject>Voltage control</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPAjEQhRujiQS5e_CwiefFdtput0dCFE2ImoBXm7K0sLhs13YXwr-3CDHO5U1m3ptMPoRuCR4SguXDfDYZAgY6pEClYPgC9YhkMqU4I5d_PafXaBDCBseilGYge-hz1ui2dOncbBvndZVMvG7WydjVO1d1cVPH2avp_K-0e-e_QmKdT97Xh1AWIR3ttTcxVS6TqdG-LutVMqpWzpftehtu0JXVVTCDs_bRx9PjfPycTt8mL-PRNC0AizbNDDVS5iYn2mpsTUHkEkSuGUhOi0xoIfMlXmRAmC4WRHALxIJmlrEFoRZoH92f7jbefXcmtGrjOh9_DwpyzgWAABxd-OQqvAvBG6saX261PyiC1RGkiiDVEaQ6g4yRu1OkNMb8s2PgOcf0B-xebww</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Wu, Tong</creator><creator>Carreno, Ignacio Losada</creator><creator>Scaglione, Anna</creator><creator>Arnold, Daniel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8897-1132</orcidid><orcidid>https://orcid.org/0000-0002-7474-6943</orcidid></search><sort><creationdate>20230901</creationdate><title>Spatio-Temporal Graph Convolutional Neural Networks for Physics-Aware Grid Learning Algorithms</title><author>Wu, Tong ; Carreno, Ignacio Losada ; Scaglione, Anna ; Arnold, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c207t-6e3e998e81afa0fec19d278a42953c67a798d0b6214acb175f21f2a4f44b13f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Convolutional neural networks</topic><topic>Cyber-Physical Attacks</topic><topic>Deep learning</topic><topic>Deep Reinforcement Learning</topic><topic>Electric potential</topic><topic>Electric power systems</topic><topic>Flow equations</topic><topic>Forecasting</topic><topic>GCN</topic><topic>Graph neural networks</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Power flow</topic><topic>Power system stability</topic><topic>Recurrent neural networks</topic><topic>Reinforcement learning</topic><topic>State estimation</topic><topic>Unbalance</topic><topic>Voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tong</creatorcontrib><creatorcontrib>Carreno, Ignacio Losada</creatorcontrib><creatorcontrib>Scaglione, Anna</creatorcontrib><creatorcontrib>Arnold, Daniel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Tong</au><au>Carreno, Ignacio Losada</au><au>Scaglione, Anna</au><au>Arnold, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatio-Temporal Graph Convolutional Neural Networks for Physics-Aware Grid Learning Algorithms</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>14</volume><issue>5</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>This paper proposes novel architectures for spatio-temporal graph convolutional and recurrent neural networks whose structure is inspired by the physics of power systems. The key insight behind our design consists in deriving the so-called graph shift operator (GSO), which is the cornerstone of Graph Convolutional Neural Network (GCN) and Graph Recursive Neural Network (GRN) designs, from the power flow equations. We demonstrate the effectiveness of the proposed architectures in two applications: in forecasting the power grid state and in finding a stochastic policy for foresighted voltage control using deep reinforcement learning. Since our design can be adopted in single-phase as well as three-phase unbalanced systems, we test our architecture in both environments. For state forecasting experiments we consider the single phase IEEE 118-bus case systems; for voltage regulation, we illustrate the performance of deep reinforcement learning policy on the unbalanced three-phase IEEE 123-bus feeder system. In both cases the physics based GCN and GRN learning algorithms we propose outperform the state of the art.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2023.3239740</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8897-1132</orcidid><orcidid>https://orcid.org/0000-0002-7474-6943</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2023-09, Vol.14 (5), p.1-1
issn 1949-3053
1949-3061
language eng
recordid cdi_ieee_primary_10025850
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Convolutional neural networks
Cyber-Physical Attacks
Deep learning
Deep Reinforcement Learning
Electric potential
Electric power systems
Flow equations
Forecasting
GCN
Graph neural networks
Machine learning
Neural networks
Physics
Power flow
Power system stability
Recurrent neural networks
Reinforcement learning
State estimation
Unbalance
Voltage
Voltage control
title Spatio-Temporal Graph Convolutional Neural Networks for Physics-Aware Grid Learning Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatio-Temporal%20Graph%20Convolutional%20Neural%20Networks%20for%20Physics-Aware%20Grid%20Learning%20Algorithms&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Wu,%20Tong&rft.date=2023-09-01&rft.volume=14&rft.issue=5&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2023.3239740&rft_dat=%3Cproquest_RIE%3E2855722720%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2855722720&rft_id=info:pmid/&rft_ieee_id=10025850&rfr_iscdi=true