Epitaxial Ultrathin MgB2 Films on C-Terminated 6H-SiC (000\bar1) Substrates Grown by HPCVD
Ultrathin superconducting MgB 2 films are desirable for device applications and for exploration of new quantum phenomena in reduced dimensions. We have reported recently that smooth ultrathin MgB 2 films can be grown on carbon-terminated SiC substrates using Hybrid Physical-Chemical Vapor Deposition...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2023-08, Vol.33 (5), p.1-4 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 33 |
creator | Yang, Weibing Chen, Ke Kasaei, Leila Feldman, Leonard C. Cunnane, Daniel Karasik, Boris S. Xi, X. X. |
description | Ultrathin superconducting MgB 2 films are desirable for device applications and for exploration of new quantum phenomena in reduced dimensions. We have reported recently that smooth ultrathin MgB 2 films can be grown on carbon-terminated SiC substrates using Hybrid Physical-Chemical Vapor Deposition (HPCVD). In this work, we present a thickness dependence study of HPCVD-grown ultrathin MgB 2 films on C-terminated SiC with a focus on the thinnest superconducting films. The thickness of a nominally 2 nm thick MgB 2 film, controlled by deposition time based on thickness calibration data from thicker films, was confirmed by cross-sectional imaging via scanning transmission electron microscopy. We obtained a superconducting transition temperature T c = 27.2 K, a self-field critical current density J c (3K, 0T) = 2 × 10 7 A/cm 2 , and a normal-state sheet resistance near the transition R s = 44.5 Ω/sq in a 2 nm thick MgB 2 film while its root-mean-square roughness was 0.62 nm. These characteristics make the HPCVD-grown ultrathin MgB 2 films highly attractive for superconducting electronic applications. |
doi_str_mv | 10.1109/TASC.2023.3235653 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10025581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10025581</ieee_id><sourcerecordid>2773455282</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-448c4b227118fe38ef8f73c6764133e6165146409d49a7e359d5a1a8328b146e3</originalsourceid><addsrcrecordid>eNotUFtLwzAYDaLgnP4AwYeAL_rQmS9fkqaPs-4iTBS2-SBCSbdUM7q2Jh26f29lPp0D5waHkEtgAwCW3C2G83TAGccBcpRK4hHpgZQ64hLkcceZhEhzjqfkLIQNYyC0kD3yNmpca36cKemybL1pP11Fnz7uOR27chtoXdE0Wli_dZVp7ZqqaTR3Kb1hjL3nxsMtne_y8Be0gU58_V3RfE-nL-nrwzk5KUwZ7MU_9slyPFqk02j2PHlMh7PIAYo2EkKvRM55DKALi9oWuohxpWIlANEqUBKEEixZi8TEFmWylgaMRq7zTrDYJ9eH3sbXXzsb2mxT73zVTWY8jlFIyTXvXFcHl7PWZo13W-P3GTDGu5cAfwFYN1lN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773455282</pqid></control><display><type>article</type><title>Epitaxial Ultrathin MgB2 Films on C-Terminated 6H-SiC (000\bar1) Substrates Grown by HPCVD</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Weibing ; Chen, Ke ; Kasaei, Leila ; Feldman, Leonard C. ; Cunnane, Daniel ; Karasik, Boris S. ; Xi, X. X.</creator><creatorcontrib>Yang, Weibing ; Chen, Ke ; Kasaei, Leila ; Feldman, Leonard C. ; Cunnane, Daniel ; Karasik, Boris S. ; Xi, X. X.</creatorcontrib><description>Ultrathin superconducting MgB 2 films are desirable for device applications and for exploration of new quantum phenomena in reduced dimensions. We have reported recently that smooth ultrathin MgB 2 films can be grown on carbon-terminated SiC substrates using Hybrid Physical-Chemical Vapor Deposition (HPCVD). In this work, we present a thickness dependence study of HPCVD-grown ultrathin MgB 2 films on C-terminated SiC with a focus on the thinnest superconducting films. The thickness of a nominally 2 nm thick MgB 2 film, controlled by deposition time based on thickness calibration data from thicker films, was confirmed by cross-sectional imaging via scanning transmission electron microscopy. We obtained a superconducting transition temperature T c = 27.2 K, a self-field critical current density J c (3K, 0T) = 2 × 10 7 A/cm 2 , and a normal-state sheet resistance near the transition R s = 44.5 Ω/sq in a 2 nm thick MgB 2 film while its root-mean-square roughness was 0.62 nm. These characteristics make the HPCVD-grown ultrathin MgB 2 films highly attractive for superconducting electronic applications.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2023.3235653</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chemical vapor deposition ; Critical current density ; Epitaxial growth ; Hybrid Physical-Chemical Vapor Deposition (HPCVD) ; Magnesium compounds ; MgB<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2 ; Physical vapor deposition ; Quantum phenomena ; Resistance ; Scanning transmission electron microscopy ; SiC ; Silicon carbide ; Silicon substrates ; Substrates ; Superconducting films ; Superconductivity ; Surface morphology ; surface termination ; Thick films ; Thickness ; Transition temperature ; ultrathin films</subject><ispartof>IEEE transactions on applied superconductivity, 2023-08, Vol.33 (5), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2025-9197 ; 0000-0003-2317-2991 ; 0000-0002-3808-1358 ; 0000-0002-4507-0403 ; 0000-0001-8039-7914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10025581$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10025581$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Weibing</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Kasaei, Leila</creatorcontrib><creatorcontrib>Feldman, Leonard C.</creatorcontrib><creatorcontrib>Cunnane, Daniel</creatorcontrib><creatorcontrib>Karasik, Boris S.</creatorcontrib><creatorcontrib>Xi, X. X.</creatorcontrib><title>Epitaxial Ultrathin MgB2 Films on C-Terminated 6H-SiC (000\bar1) Substrates Grown by HPCVD</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Ultrathin superconducting MgB 2 films are desirable for device applications and for exploration of new quantum phenomena in reduced dimensions. We have reported recently that smooth ultrathin MgB 2 films can be grown on carbon-terminated SiC substrates using Hybrid Physical-Chemical Vapor Deposition (HPCVD). In this work, we present a thickness dependence study of HPCVD-grown ultrathin MgB 2 films on C-terminated SiC with a focus on the thinnest superconducting films. The thickness of a nominally 2 nm thick MgB 2 film, controlled by deposition time based on thickness calibration data from thicker films, was confirmed by cross-sectional imaging via scanning transmission electron microscopy. We obtained a superconducting transition temperature T c = 27.2 K, a self-field critical current density J c (3K, 0T) = 2 × 10 7 A/cm 2 , and a normal-state sheet resistance near the transition R s = 44.5 Ω/sq in a 2 nm thick MgB 2 film while its root-mean-square roughness was 0.62 nm. These characteristics make the HPCVD-grown ultrathin MgB 2 films highly attractive for superconducting electronic applications.</description><subject>Chemical vapor deposition</subject><subject>Critical current density</subject><subject>Epitaxial growth</subject><subject>Hybrid Physical-Chemical Vapor Deposition (HPCVD)</subject><subject>Magnesium compounds</subject><subject>MgB<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2</subject><subject>Physical vapor deposition</subject><subject>Quantum phenomena</subject><subject>Resistance</subject><subject>Scanning transmission electron microscopy</subject><subject>SiC</subject><subject>Silicon carbide</subject><subject>Silicon substrates</subject><subject>Substrates</subject><subject>Superconducting films</subject><subject>Superconductivity</subject><subject>Surface morphology</subject><subject>surface termination</subject><subject>Thick films</subject><subject>Thickness</subject><subject>Transition temperature</subject><subject>ultrathin films</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotUFtLwzAYDaLgnP4AwYeAL_rQmS9fkqaPs-4iTBS2-SBCSbdUM7q2Jh26f29lPp0D5waHkEtgAwCW3C2G83TAGccBcpRK4hHpgZQ64hLkcceZhEhzjqfkLIQNYyC0kD3yNmpca36cKemybL1pP11Fnz7uOR27chtoXdE0Wli_dZVp7ZqqaTR3Kb1hjL3nxsMtne_y8Be0gU58_V3RfE-nL-nrwzk5KUwZ7MU_9slyPFqk02j2PHlMh7PIAYo2EkKvRM55DKALi9oWuohxpWIlANEqUBKEEixZi8TEFmWylgaMRq7zTrDYJ9eH3sbXXzsb2mxT73zVTWY8jlFIyTXvXFcHl7PWZo13W-P3GTDGu5cAfwFYN1lN</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Yang, Weibing</creator><creator>Chen, Ke</creator><creator>Kasaei, Leila</creator><creator>Feldman, Leonard C.</creator><creator>Cunnane, Daniel</creator><creator>Karasik, Boris S.</creator><creator>Xi, X. X.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2025-9197</orcidid><orcidid>https://orcid.org/0000-0003-2317-2991</orcidid><orcidid>https://orcid.org/0000-0002-3808-1358</orcidid><orcidid>https://orcid.org/0000-0002-4507-0403</orcidid><orcidid>https://orcid.org/0000-0001-8039-7914</orcidid></search><sort><creationdate>20230801</creationdate><title>Epitaxial Ultrathin MgB2 Films on C-Terminated 6H-SiC (000\bar1) Substrates Grown by HPCVD</title><author>Yang, Weibing ; Chen, Ke ; Kasaei, Leila ; Feldman, Leonard C. ; Cunnane, Daniel ; Karasik, Boris S. ; Xi, X. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-448c4b227118fe38ef8f73c6764133e6165146409d49a7e359d5a1a8328b146e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical vapor deposition</topic><topic>Critical current density</topic><topic>Epitaxial growth</topic><topic>Hybrid Physical-Chemical Vapor Deposition (HPCVD)</topic><topic>Magnesium compounds</topic><topic>MgB<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2</topic><topic>Physical vapor deposition</topic><topic>Quantum phenomena</topic><topic>Resistance</topic><topic>Scanning transmission electron microscopy</topic><topic>SiC</topic><topic>Silicon carbide</topic><topic>Silicon substrates</topic><topic>Substrates</topic><topic>Superconducting films</topic><topic>Superconductivity</topic><topic>Surface morphology</topic><topic>surface termination</topic><topic>Thick films</topic><topic>Thickness</topic><topic>Transition temperature</topic><topic>ultrathin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Weibing</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Kasaei, Leila</creatorcontrib><creatorcontrib>Feldman, Leonard C.</creatorcontrib><creatorcontrib>Cunnane, Daniel</creatorcontrib><creatorcontrib>Karasik, Boris S.</creatorcontrib><creatorcontrib>Xi, X. X.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Weibing</au><au>Chen, Ke</au><au>Kasaei, Leila</au><au>Feldman, Leonard C.</au><au>Cunnane, Daniel</au><au>Karasik, Boris S.</au><au>Xi, X. X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitaxial Ultrathin MgB2 Films on C-Terminated 6H-SiC (000\bar1) Substrates Grown by HPCVD</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Ultrathin superconducting MgB 2 films are desirable for device applications and for exploration of new quantum phenomena in reduced dimensions. We have reported recently that smooth ultrathin MgB 2 films can be grown on carbon-terminated SiC substrates using Hybrid Physical-Chemical Vapor Deposition (HPCVD). In this work, we present a thickness dependence study of HPCVD-grown ultrathin MgB 2 films on C-terminated SiC with a focus on the thinnest superconducting films. The thickness of a nominally 2 nm thick MgB 2 film, controlled by deposition time based on thickness calibration data from thicker films, was confirmed by cross-sectional imaging via scanning transmission electron microscopy. We obtained a superconducting transition temperature T c = 27.2 K, a self-field critical current density J c (3K, 0T) = 2 × 10 7 A/cm 2 , and a normal-state sheet resistance near the transition R s = 44.5 Ω/sq in a 2 nm thick MgB 2 film while its root-mean-square roughness was 0.62 nm. These characteristics make the HPCVD-grown ultrathin MgB 2 films highly attractive for superconducting electronic applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2023.3235653</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-2025-9197</orcidid><orcidid>https://orcid.org/0000-0003-2317-2991</orcidid><orcidid>https://orcid.org/0000-0002-3808-1358</orcidid><orcidid>https://orcid.org/0000-0002-4507-0403</orcidid><orcidid>https://orcid.org/0000-0001-8039-7914</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2023-08, Vol.33 (5), p.1-4 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_10025581 |
source | IEEE Electronic Library (IEL) |
subjects | Chemical vapor deposition Critical current density Epitaxial growth Hybrid Physical-Chemical Vapor Deposition (HPCVD) Magnesium compounds MgB<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2 Physical vapor deposition Quantum phenomena Resistance Scanning transmission electron microscopy SiC Silicon carbide Silicon substrates Substrates Superconducting films Superconductivity Surface morphology surface termination Thick films Thickness Transition temperature ultrathin films |
title | Epitaxial Ultrathin MgB2 Films on C-Terminated 6H-SiC (000\bar1) Substrates Grown by HPCVD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitaxial%20Ultrathin%20MgB2%20Films%20on%20C-Terminated%206H-SiC%20(000%5Cbar1)%20Substrates%20Grown%20by%20HPCVD&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Yang,%20Weibing&rft.date=2023-08-01&rft.volume=33&rft.issue=5&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2023.3235653&rft_dat=%3Cproquest_RIE%3E2773455282%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773455282&rft_id=info:pmid/&rft_ieee_id=10025581&rfr_iscdi=true |