Epitaxial Ultrathin MgB2 Films on C-Terminated 6H-SiC (000\bar1) Substrates Grown by HPCVD

Ultrathin superconducting MgB 2 films are desirable for device applications and for exploration of new quantum phenomena in reduced dimensions. We have reported recently that smooth ultrathin MgB 2 films can be grown on carbon-terminated SiC substrates using Hybrid Physical-Chemical Vapor Deposition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2023-08, Vol.33 (5), p.1-4
Hauptverfasser: Yang, Weibing, Chen, Ke, Kasaei, Leila, Feldman, Leonard C., Cunnane, Daniel, Karasik, Boris S., Xi, X. X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 33
creator Yang, Weibing
Chen, Ke
Kasaei, Leila
Feldman, Leonard C.
Cunnane, Daniel
Karasik, Boris S.
Xi, X. X.
description Ultrathin superconducting MgB 2 films are desirable for device applications and for exploration of new quantum phenomena in reduced dimensions. We have reported recently that smooth ultrathin MgB 2 films can be grown on carbon-terminated SiC substrates using Hybrid Physical-Chemical Vapor Deposition (HPCVD). In this work, we present a thickness dependence study of HPCVD-grown ultrathin MgB 2 films on C-terminated SiC with a focus on the thinnest superconducting films. The thickness of a nominally 2 nm thick MgB 2 film, controlled by deposition time based on thickness calibration data from thicker films, was confirmed by cross-sectional imaging via scanning transmission electron microscopy. We obtained a superconducting transition temperature T c = 27.2 K, a self-field critical current density J c (3K, 0T) = 2 × 10 7 A/cm 2 , and a normal-state sheet resistance near the transition R s = 44.5 Ω/sq in a 2 nm thick MgB 2 film while its root-mean-square roughness was 0.62 nm. These characteristics make the HPCVD-grown ultrathin MgB 2 films highly attractive for superconducting electronic applications.
doi_str_mv 10.1109/TASC.2023.3235653
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10025581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10025581</ieee_id><sourcerecordid>2773455282</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-448c4b227118fe38ef8f73c6764133e6165146409d49a7e359d5a1a8328b146e3</originalsourceid><addsrcrecordid>eNotUFtLwzAYDaLgnP4AwYeAL_rQmS9fkqaPs-4iTBS2-SBCSbdUM7q2Jh26f29lPp0D5waHkEtgAwCW3C2G83TAGccBcpRK4hHpgZQ64hLkcceZhEhzjqfkLIQNYyC0kD3yNmpca36cKemybL1pP11Fnz7uOR27chtoXdE0Wli_dZVp7ZqqaTR3Kb1hjL3nxsMtne_y8Be0gU58_V3RfE-nL-nrwzk5KUwZ7MU_9slyPFqk02j2PHlMh7PIAYo2EkKvRM55DKALi9oWuohxpWIlANEqUBKEEixZi8TEFmWylgaMRq7zTrDYJ9eH3sbXXzsb2mxT73zVTWY8jlFIyTXvXFcHl7PWZo13W-P3GTDGu5cAfwFYN1lN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773455282</pqid></control><display><type>article</type><title>Epitaxial Ultrathin MgB2 Films on C-Terminated 6H-SiC (000\bar1) Substrates Grown by HPCVD</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Weibing ; Chen, Ke ; Kasaei, Leila ; Feldman, Leonard C. ; Cunnane, Daniel ; Karasik, Boris S. ; Xi, X. X.</creator><creatorcontrib>Yang, Weibing ; Chen, Ke ; Kasaei, Leila ; Feldman, Leonard C. ; Cunnane, Daniel ; Karasik, Boris S. ; Xi, X. X.</creatorcontrib><description>Ultrathin superconducting MgB 2 films are desirable for device applications and for exploration of new quantum phenomena in reduced dimensions. We have reported recently that smooth ultrathin MgB 2 films can be grown on carbon-terminated SiC substrates using Hybrid Physical-Chemical Vapor Deposition (HPCVD). In this work, we present a thickness dependence study of HPCVD-grown ultrathin MgB 2 films on C-terminated SiC with a focus on the thinnest superconducting films. The thickness of a nominally 2 nm thick MgB 2 film, controlled by deposition time based on thickness calibration data from thicker films, was confirmed by cross-sectional imaging via scanning transmission electron microscopy. We obtained a superconducting transition temperature T c = 27.2 K, a self-field critical current density J c (3K, 0T) = 2 × 10 7 A/cm 2 , and a normal-state sheet resistance near the transition R s = 44.5 Ω/sq in a 2 nm thick MgB 2 film while its root-mean-square roughness was 0.62 nm. These characteristics make the HPCVD-grown ultrathin MgB 2 films highly attractive for superconducting electronic applications.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2023.3235653</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chemical vapor deposition ; Critical current density ; Epitaxial growth ; Hybrid Physical-Chemical Vapor Deposition (HPCVD) ; Magnesium compounds ; MgB&lt;sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;2 ; Physical vapor deposition ; Quantum phenomena ; Resistance ; Scanning transmission electron microscopy ; SiC ; Silicon carbide ; Silicon substrates ; Substrates ; Superconducting films ; Superconductivity ; Surface morphology ; surface termination ; Thick films ; Thickness ; Transition temperature ; ultrathin films</subject><ispartof>IEEE transactions on applied superconductivity, 2023-08, Vol.33 (5), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2025-9197 ; 0000-0003-2317-2991 ; 0000-0002-3808-1358 ; 0000-0002-4507-0403 ; 0000-0001-8039-7914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10025581$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10025581$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Weibing</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Kasaei, Leila</creatorcontrib><creatorcontrib>Feldman, Leonard C.</creatorcontrib><creatorcontrib>Cunnane, Daniel</creatorcontrib><creatorcontrib>Karasik, Boris S.</creatorcontrib><creatorcontrib>Xi, X. X.</creatorcontrib><title>Epitaxial Ultrathin MgB2 Films on C-Terminated 6H-SiC (000\bar1) Substrates Grown by HPCVD</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Ultrathin superconducting MgB 2 films are desirable for device applications and for exploration of new quantum phenomena in reduced dimensions. We have reported recently that smooth ultrathin MgB 2 films can be grown on carbon-terminated SiC substrates using Hybrid Physical-Chemical Vapor Deposition (HPCVD). In this work, we present a thickness dependence study of HPCVD-grown ultrathin MgB 2 films on C-terminated SiC with a focus on the thinnest superconducting films. The thickness of a nominally 2 nm thick MgB 2 film, controlled by deposition time based on thickness calibration data from thicker films, was confirmed by cross-sectional imaging via scanning transmission electron microscopy. We obtained a superconducting transition temperature T c = 27.2 K, a self-field critical current density J c (3K, 0T) = 2 × 10 7 A/cm 2 , and a normal-state sheet resistance near the transition R s = 44.5 Ω/sq in a 2 nm thick MgB 2 film while its root-mean-square roughness was 0.62 nm. These characteristics make the HPCVD-grown ultrathin MgB 2 films highly attractive for superconducting electronic applications.</description><subject>Chemical vapor deposition</subject><subject>Critical current density</subject><subject>Epitaxial growth</subject><subject>Hybrid Physical-Chemical Vapor Deposition (HPCVD)</subject><subject>Magnesium compounds</subject><subject>MgB&lt;sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;2</subject><subject>Physical vapor deposition</subject><subject>Quantum phenomena</subject><subject>Resistance</subject><subject>Scanning transmission electron microscopy</subject><subject>SiC</subject><subject>Silicon carbide</subject><subject>Silicon substrates</subject><subject>Substrates</subject><subject>Superconducting films</subject><subject>Superconductivity</subject><subject>Surface morphology</subject><subject>surface termination</subject><subject>Thick films</subject><subject>Thickness</subject><subject>Transition temperature</subject><subject>ultrathin films</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotUFtLwzAYDaLgnP4AwYeAL_rQmS9fkqaPs-4iTBS2-SBCSbdUM7q2Jh26f29lPp0D5waHkEtgAwCW3C2G83TAGccBcpRK4hHpgZQ64hLkcceZhEhzjqfkLIQNYyC0kD3yNmpca36cKemybL1pP11Fnz7uOR27chtoXdE0Wli_dZVp7ZqqaTR3Kb1hjL3nxsMtne_y8Be0gU58_V3RfE-nL-nrwzk5KUwZ7MU_9slyPFqk02j2PHlMh7PIAYo2EkKvRM55DKALi9oWuohxpWIlANEqUBKEEixZi8TEFmWylgaMRq7zTrDYJ9eH3sbXXzsb2mxT73zVTWY8jlFIyTXvXFcHl7PWZo13W-P3GTDGu5cAfwFYN1lN</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Yang, Weibing</creator><creator>Chen, Ke</creator><creator>Kasaei, Leila</creator><creator>Feldman, Leonard C.</creator><creator>Cunnane, Daniel</creator><creator>Karasik, Boris S.</creator><creator>Xi, X. X.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2025-9197</orcidid><orcidid>https://orcid.org/0000-0003-2317-2991</orcidid><orcidid>https://orcid.org/0000-0002-3808-1358</orcidid><orcidid>https://orcid.org/0000-0002-4507-0403</orcidid><orcidid>https://orcid.org/0000-0001-8039-7914</orcidid></search><sort><creationdate>20230801</creationdate><title>Epitaxial Ultrathin MgB2 Films on C-Terminated 6H-SiC (000\bar1) Substrates Grown by HPCVD</title><author>Yang, Weibing ; Chen, Ke ; Kasaei, Leila ; Feldman, Leonard C. ; Cunnane, Daniel ; Karasik, Boris S. ; Xi, X. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-448c4b227118fe38ef8f73c6764133e6165146409d49a7e359d5a1a8328b146e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical vapor deposition</topic><topic>Critical current density</topic><topic>Epitaxial growth</topic><topic>Hybrid Physical-Chemical Vapor Deposition (HPCVD)</topic><topic>Magnesium compounds</topic><topic>MgB&lt;sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;2</topic><topic>Physical vapor deposition</topic><topic>Quantum phenomena</topic><topic>Resistance</topic><topic>Scanning transmission electron microscopy</topic><topic>SiC</topic><topic>Silicon carbide</topic><topic>Silicon substrates</topic><topic>Substrates</topic><topic>Superconducting films</topic><topic>Superconductivity</topic><topic>Surface morphology</topic><topic>surface termination</topic><topic>Thick films</topic><topic>Thickness</topic><topic>Transition temperature</topic><topic>ultrathin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Weibing</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Kasaei, Leila</creatorcontrib><creatorcontrib>Feldman, Leonard C.</creatorcontrib><creatorcontrib>Cunnane, Daniel</creatorcontrib><creatorcontrib>Karasik, Boris S.</creatorcontrib><creatorcontrib>Xi, X. X.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Weibing</au><au>Chen, Ke</au><au>Kasaei, Leila</au><au>Feldman, Leonard C.</au><au>Cunnane, Daniel</au><au>Karasik, Boris S.</au><au>Xi, X. X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitaxial Ultrathin MgB2 Films on C-Terminated 6H-SiC (000\bar1) Substrates Grown by HPCVD</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Ultrathin superconducting MgB 2 films are desirable for device applications and for exploration of new quantum phenomena in reduced dimensions. We have reported recently that smooth ultrathin MgB 2 films can be grown on carbon-terminated SiC substrates using Hybrid Physical-Chemical Vapor Deposition (HPCVD). In this work, we present a thickness dependence study of HPCVD-grown ultrathin MgB 2 films on C-terminated SiC with a focus on the thinnest superconducting films. The thickness of a nominally 2 nm thick MgB 2 film, controlled by deposition time based on thickness calibration data from thicker films, was confirmed by cross-sectional imaging via scanning transmission electron microscopy. We obtained a superconducting transition temperature T c = 27.2 K, a self-field critical current density J c (3K, 0T) = 2 × 10 7 A/cm 2 , and a normal-state sheet resistance near the transition R s = 44.5 Ω/sq in a 2 nm thick MgB 2 film while its root-mean-square roughness was 0.62 nm. These characteristics make the HPCVD-grown ultrathin MgB 2 films highly attractive for superconducting electronic applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2023.3235653</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-2025-9197</orcidid><orcidid>https://orcid.org/0000-0003-2317-2991</orcidid><orcidid>https://orcid.org/0000-0002-3808-1358</orcidid><orcidid>https://orcid.org/0000-0002-4507-0403</orcidid><orcidid>https://orcid.org/0000-0001-8039-7914</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2023-08, Vol.33 (5), p.1-4
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_10025581
source IEEE Electronic Library (IEL)
subjects Chemical vapor deposition
Critical current density
Epitaxial growth
Hybrid Physical-Chemical Vapor Deposition (HPCVD)
Magnesium compounds
MgB<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2
Physical vapor deposition
Quantum phenomena
Resistance
Scanning transmission electron microscopy
SiC
Silicon carbide
Silicon substrates
Substrates
Superconducting films
Superconductivity
Surface morphology
surface termination
Thick films
Thickness
Transition temperature
ultrathin films
title Epitaxial Ultrathin MgB2 Films on C-Terminated 6H-SiC (000\bar1) Substrates Grown by HPCVD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitaxial%20Ultrathin%20MgB2%20Films%20on%20C-Terminated%206H-SiC%20(000%5Cbar1)%20Substrates%20Grown%20by%20HPCVD&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Yang,%20Weibing&rft.date=2023-08-01&rft.volume=33&rft.issue=5&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2023.3235653&rft_dat=%3Cproquest_RIE%3E2773455282%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773455282&rft_id=info:pmid/&rft_ieee_id=10025581&rfr_iscdi=true