Mask and Cloze: Automatic Open Cloze Question Generation using a Masked Language Model

This paper conducts the first trial to apply a masked language AI model and the "Gini coefficient" to the field of English study. We propose an algorithm named CLOZER that generates open cloze questions that inquiry knowledge of English learners. Open cloze questions (OCQ) have been attrac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Matsumori, Shoya, Okuoka, Kohei, Shibata, Ryoichi, Inoue, Minami, Fukuchi, Yosuke, Imai, Michita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Matsumori, Shoya
Okuoka, Kohei
Shibata, Ryoichi
Inoue, Minami
Fukuchi, Yosuke
Imai, Michita
description This paper conducts the first trial to apply a masked language AI model and the "Gini coefficient" to the field of English study. We propose an algorithm named CLOZER that generates open cloze questions that inquiry knowledge of English learners. Open cloze questions (OCQ) have been attracting attention for both measuring the ability and facilitating the learning of English learners. However, since OCQ is in free form, teachers have to ensure that only a ground truth answer and no additional words will be accepted in the blank. A remarkable benefit of CLOZER is to relieve teachers of the burden of producing OCQ. Moreover, CLOZER provides a self-study environment for English learners by automatically generating OCQ. We evaluated CLOZER through quantitative experiments on 1,600 answers and show its effectiveness statistically. Compared with human-generated questions, we also revealed that CLOZER can generate OCQs better than the average non-native English teacher. Additionally, we conducted a field study at a high school to clarify the benefits and hurdles when introducing CLOZER. Then, on the basis of our findings, we proposed several design improvements.
doi_str_mv 10.1109/ACCESS.2023.3239005
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10024779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10024779</ieee_id><doaj_id>oai_doaj_org_article_2e8f2db4ec9a4328bfb89f1e5f081939</doaj_id><sourcerecordid>2773453062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-fa1a5aa79e4499701630e4f50e0c27a35e1aec5944e04502ec95be9b020a1fe63</originalsourceid><addsrcrecordid>eNpNkU9LAzEQxRdRUGo_gR4Cnlsn_3Ybb2WptVARqXoNs7uTsrVuarZ70E9v6hYxlwyPeb_J5CXJFYcx52Bup3k-W63GAoQcSyENgD5JLgRPzUhqmZ7-q8-TYdtuIJ5JlHR2kbw9YvvOsKlYvvXfdMem3d5_4L4u2dOOml5lzx21-9o3bE4NBfwtu7Zu1gzZAUAVW2Kz7nBN7NFXtL1MzhxuWxoe70Hyej97yR9Gy6f5Ip8uR6UCsx855KgRM0NKGZMBTyWQchoISpGh1MSRSm2UIlAaBJVGF2QKEIDcUSoHyaLnVh43dhfqDwxf1mNtfwUf1hZDXGZLVtDEiapQkYFKiknhiolxnLSLn2GkiaybnrUL_vOwsN34LjTx-VZkmVRaQipil-y7yuDbNpD7m8rBHvKwfR72kIc95hFd172rJqJ_DhAqy4z8ASKThU0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773453062</pqid></control><display><type>article</type><title>Mask and Cloze: Automatic Open Cloze Question Generation using a Masked Language Model</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Matsumori, Shoya ; Okuoka, Kohei ; Shibata, Ryoichi ; Inoue, Minami ; Fukuchi, Yosuke ; Imai, Michita</creator><creatorcontrib>Matsumori, Shoya ; Okuoka, Kohei ; Shibata, Ryoichi ; Inoue, Minami ; Fukuchi, Yosuke ; Imai, Michita</creatorcontrib><description>This paper conducts the first trial to apply a masked language AI model and the "Gini coefficient" to the field of English study. We propose an algorithm named CLOZER that generates open cloze questions that inquiry knowledge of English learners. Open cloze questions (OCQ) have been attracting attention for both measuring the ability and facilitating the learning of English learners. However, since OCQ is in free form, teachers have to ensure that only a ground truth answer and no additional words will be accepted in the blank. A remarkable benefit of CLOZER is to relieve teachers of the burden of producing OCQ. Moreover, CLOZER provides a self-study environment for English learners by automatically generating OCQ. We evaluated CLOZER through quantitative experiments on 1,600 answers and show its effectiveness statistically. Compared with human-generated questions, we also revealed that CLOZER can generate OCQs better than the average non-native English teacher. Additionally, we conducted a field study at a high school to clarify the benefits and hurdles when introducing CLOZER. Then, on the basis of our findings, we proposed several design improvements.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3239005</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; automatic question generation ; Brain modeling ; Computational modeling ; field study ; Free form ; masked language model ; Measurement ; Open cloze test ; question answering (information retrieval) ; Questions ; Teachers ; Testing ; Text categorization ; Training</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-fa1a5aa79e4499701630e4f50e0c27a35e1aec5944e04502ec95be9b020a1fe63</citedby><cites>FETCH-LOGICAL-c409t-fa1a5aa79e4499701630e4f50e0c27a35e1aec5944e04502ec95be9b020a1fe63</cites><orcidid>0000-0002-7514-9040 ; 0000-0003-3009-571X ; 0000-0002-5569-3356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10024779$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Matsumori, Shoya</creatorcontrib><creatorcontrib>Okuoka, Kohei</creatorcontrib><creatorcontrib>Shibata, Ryoichi</creatorcontrib><creatorcontrib>Inoue, Minami</creatorcontrib><creatorcontrib>Fukuchi, Yosuke</creatorcontrib><creatorcontrib>Imai, Michita</creatorcontrib><title>Mask and Cloze: Automatic Open Cloze Question Generation using a Masked Language Model</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper conducts the first trial to apply a masked language AI model and the "Gini coefficient" to the field of English study. We propose an algorithm named CLOZER that generates open cloze questions that inquiry knowledge of English learners. Open cloze questions (OCQ) have been attracting attention for both measuring the ability and facilitating the learning of English learners. However, since OCQ is in free form, teachers have to ensure that only a ground truth answer and no additional words will be accepted in the blank. A remarkable benefit of CLOZER is to relieve teachers of the burden of producing OCQ. Moreover, CLOZER provides a self-study environment for English learners by automatically generating OCQ. We evaluated CLOZER through quantitative experiments on 1,600 answers and show its effectiveness statistically. Compared with human-generated questions, we also revealed that CLOZER can generate OCQs better than the average non-native English teacher. Additionally, we conducted a field study at a high school to clarify the benefits and hurdles when introducing CLOZER. Then, on the basis of our findings, we proposed several design improvements.</description><subject>Algorithms</subject><subject>automatic question generation</subject><subject>Brain modeling</subject><subject>Computational modeling</subject><subject>field study</subject><subject>Free form</subject><subject>masked language model</subject><subject>Measurement</subject><subject>Open cloze test</subject><subject>question answering (information retrieval)</subject><subject>Questions</subject><subject>Teachers</subject><subject>Testing</subject><subject>Text categorization</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LAzEQxRdRUGo_gR4Cnlsn_3Ybb2WptVARqXoNs7uTsrVuarZ70E9v6hYxlwyPeb_J5CXJFYcx52Bup3k-W63GAoQcSyENgD5JLgRPzUhqmZ7-q8-TYdtuIJ5JlHR2kbw9YvvOsKlYvvXfdMem3d5_4L4u2dOOml5lzx21-9o3bE4NBfwtu7Zu1gzZAUAVW2Kz7nBN7NFXtL1MzhxuWxoe70Hyej97yR9Gy6f5Ip8uR6UCsx855KgRM0NKGZMBTyWQchoISpGh1MSRSm2UIlAaBJVGF2QKEIDcUSoHyaLnVh43dhfqDwxf1mNtfwUf1hZDXGZLVtDEiapQkYFKiknhiolxnLSLn2GkiaybnrUL_vOwsN34LjTx-VZkmVRaQipil-y7yuDbNpD7m8rBHvKwfR72kIc95hFd172rJqJ_DhAqy4z8ASKThU0</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Matsumori, Shoya</creator><creator>Okuoka, Kohei</creator><creator>Shibata, Ryoichi</creator><creator>Inoue, Minami</creator><creator>Fukuchi, Yosuke</creator><creator>Imai, Michita</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7514-9040</orcidid><orcidid>https://orcid.org/0000-0003-3009-571X</orcidid><orcidid>https://orcid.org/0000-0002-5569-3356</orcidid></search><sort><creationdate>20230101</creationdate><title>Mask and Cloze: Automatic Open Cloze Question Generation using a Masked Language Model</title><author>Matsumori, Shoya ; Okuoka, Kohei ; Shibata, Ryoichi ; Inoue, Minami ; Fukuchi, Yosuke ; Imai, Michita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-fa1a5aa79e4499701630e4f50e0c27a35e1aec5944e04502ec95be9b020a1fe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>automatic question generation</topic><topic>Brain modeling</topic><topic>Computational modeling</topic><topic>field study</topic><topic>Free form</topic><topic>masked language model</topic><topic>Measurement</topic><topic>Open cloze test</topic><topic>question answering (information retrieval)</topic><topic>Questions</topic><topic>Teachers</topic><topic>Testing</topic><topic>Text categorization</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsumori, Shoya</creatorcontrib><creatorcontrib>Okuoka, Kohei</creatorcontrib><creatorcontrib>Shibata, Ryoichi</creatorcontrib><creatorcontrib>Inoue, Minami</creatorcontrib><creatorcontrib>Fukuchi, Yosuke</creatorcontrib><creatorcontrib>Imai, Michita</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsumori, Shoya</au><au>Okuoka, Kohei</au><au>Shibata, Ryoichi</au><au>Inoue, Minami</au><au>Fukuchi, Yosuke</au><au>Imai, Michita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mask and Cloze: Automatic Open Cloze Question Generation using a Masked Language Model</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper conducts the first trial to apply a masked language AI model and the "Gini coefficient" to the field of English study. We propose an algorithm named CLOZER that generates open cloze questions that inquiry knowledge of English learners. Open cloze questions (OCQ) have been attracting attention for both measuring the ability and facilitating the learning of English learners. However, since OCQ is in free form, teachers have to ensure that only a ground truth answer and no additional words will be accepted in the blank. A remarkable benefit of CLOZER is to relieve teachers of the burden of producing OCQ. Moreover, CLOZER provides a self-study environment for English learners by automatically generating OCQ. We evaluated CLOZER through quantitative experiments on 1,600 answers and show its effectiveness statistically. Compared with human-generated questions, we also revealed that CLOZER can generate OCQs better than the average non-native English teacher. Additionally, we conducted a field study at a high school to clarify the benefits and hurdles when introducing CLOZER. Then, on the basis of our findings, we proposed several design improvements.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3239005</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7514-9040</orcidid><orcidid>https://orcid.org/0000-0003-3009-571X</orcidid><orcidid>https://orcid.org/0000-0002-5569-3356</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10024779
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
automatic question generation
Brain modeling
Computational modeling
field study
Free form
masked language model
Measurement
Open cloze test
question answering (information retrieval)
Questions
Teachers
Testing
Text categorization
Training
title Mask and Cloze: Automatic Open Cloze Question Generation using a Masked Language Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mask%20and%20Cloze:%20Automatic%20Open%20Cloze%20Question%20Generation%20using%20a%20Masked%20Language%20Model&rft.jtitle=IEEE%20access&rft.au=Matsumori,%20Shoya&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3239005&rft_dat=%3Cproquest_ieee_%3E2773453062%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773453062&rft_id=info:pmid/&rft_ieee_id=10024779&rft_doaj_id=oai_doaj_org_article_2e8f2db4ec9a4328bfb89f1e5f081939&rfr_iscdi=true