Compact, High-Performance Positive Magnetophoresis Chip With Integrated Patterned Magnet for Efficient Particle Trapping
In this work, we demonstrate a cost-effective, scalable, and rapid technique to fabricate a robust, high-performance on-chip positive magnetophoretic system. The system incorporates a thick patterned permanent magnet and microfluidic channel on a single polymethyl methacrylate (PMMA) substrate for o...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2023-04, Vol.32 (2), p.1-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Journal of microelectromechanical systems |
container_volume | 32 |
creator | Yadav, Vinit Kumar Patel, Yogesh M. Bahga, Supreet Singh Das, Samaresh Mallick, Dhiman |
description | In this work, we demonstrate a cost-effective, scalable, and rapid technique to fabricate a robust, high-performance on-chip positive magnetophoretic system. The system incorporates a thick patterned permanent magnet and microfluidic channel on a single polymethyl methacrylate (PMMA) substrate for on-chip manipulation of magnetic particles (MPs). Using the suitable patterning of the magnet, a spatially varying magnetic force is exerted onto the MPs in the channel, which is pertinent for capturing the MPs at specific locations. The device geometry is optimized using FEM simulations to prevent any blockage in the channel due to the accumulation of the MPs and ease the fabrication process. The \sim 1.5-fold enhancement in the trapping efficiency is observed upon lowering the flow rate from 15 \mu l/min to 9 \mu l/min, leading to 94.5% trapping efficiency at a lower flow rate of 9 \mu l/min. 2022-0173 |
doi_str_mv | 10.1109/JMEMS.2023.3234760 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10024108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10024108</ieee_id><sourcerecordid>2795805122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-631df18798e324a2b2eaa04998fe44f88f71c4e34a7dd03429d1287564f831a3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhosoOKd_QLwIeGtnvtqklzKmmzgcOPAyxPakzdjammSi_97M7sKr88L7ceBJkmuCJ4Tg4v55OVu-TSimbMIo4yLHJ8mIFJykmGTyNGqciVSQTJwnF95vMCacy3yUfE-7Xa_LcIfmtm7SFTjTuZ1uS0CrzttgvwAtdd1C6Pqmc-CtR9PG9ujdhgYt2gC10wEqtNIhgGujGuIo7qCZMba00IZou2DLLaC1031v2_oyOTN66-HqeMfJ-nG2ns7Tl9enxfThJS1pkYc0Z6QyRIpCAqNc0w8KWmNeFNIA50ZKI0jJgXEtqgozTouKUCmyPHqMaDZObofZ3nWfe_BBbbq9a-NHRUWRSZwRSmOKDqnSdd47MKp3dqfdjyJYHQCrP8DqAFgdAcfSzVCyAPCvgCknWLJffvV4Gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795805122</pqid></control><display><type>article</type><title>Compact, High-Performance Positive Magnetophoresis Chip With Integrated Patterned Magnet for Efficient Particle Trapping</title><source>IEEE Electronic Library (IEL)</source><creator>Yadav, Vinit Kumar ; Patel, Yogesh M. ; Bahga, Supreet Singh ; Das, Samaresh ; Mallick, Dhiman</creator><creatorcontrib>Yadav, Vinit Kumar ; Patel, Yogesh M. ; Bahga, Supreet Singh ; Das, Samaresh ; Mallick, Dhiman</creatorcontrib><description><![CDATA[In this work, we demonstrate a cost-effective, scalable, and rapid technique to fabricate a robust, high-performance on-chip positive magnetophoretic system. The system incorporates a thick patterned permanent magnet and microfluidic channel on a single polymethyl methacrylate (PMMA) substrate for on-chip manipulation of magnetic particles (MPs). Using the suitable patterning of the magnet, a spatially varying magnetic force is exerted onto the MPs in the channel, which is pertinent for capturing the MPs at specific locations. The device geometry is optimized using FEM simulations to prevent any blockage in the channel due to the accumulation of the MPs and ease the fabrication process. The <inline-formula> <tex-math notation="LaTeX">\sim</tex-math> </inline-formula>1.5-fold enhancement in the trapping efficiency is observed upon lowering the flow rate from 15 <inline-formula> <tex-math notation="LaTeX">\mu </tex-math> </inline-formula>l/min to 9 <inline-formula> <tex-math notation="LaTeX">\mu </tex-math> </inline-formula>l/min, leading to 94.5% trapping efficiency at a lower flow rate of 9 <inline-formula> <tex-math notation="LaTeX">\mu </tex-math> </inline-formula>l/min. 2022-0173]]></description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2023.3234760</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Flow velocity ; Magnetic devices ; Magnetic domains ; Magnetic fields ; Magnetic flux ; magnetic particle ; Magnetic resonance imaging ; Magnetic separation ; magnetophoresis ; Microfluidics ; NdFeB ; PDMS ; Permanent magnet ; Permanent magnets ; PMMA ; Polymethyl methacrylate ; Substrates ; Trapping</subject><ispartof>Journal of microelectromechanical systems, 2023-04, Vol.32 (2), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-631df18798e324a2b2eaa04998fe44f88f71c4e34a7dd03429d1287564f831a3</citedby><cites>FETCH-LOGICAL-c296t-631df18798e324a2b2eaa04998fe44f88f71c4e34a7dd03429d1287564f831a3</cites><orcidid>0000-0003-4159-1962 ; 0000-0001-8500-7014 ; 0000-0002-6622-6403 ; 0000-0002-6637-2558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10024108$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10024108$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yadav, Vinit Kumar</creatorcontrib><creatorcontrib>Patel, Yogesh M.</creatorcontrib><creatorcontrib>Bahga, Supreet Singh</creatorcontrib><creatorcontrib>Das, Samaresh</creatorcontrib><creatorcontrib>Mallick, Dhiman</creatorcontrib><title>Compact, High-Performance Positive Magnetophoresis Chip With Integrated Patterned Magnet for Efficient Particle Trapping</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description><![CDATA[In this work, we demonstrate a cost-effective, scalable, and rapid technique to fabricate a robust, high-performance on-chip positive magnetophoretic system. The system incorporates a thick patterned permanent magnet and microfluidic channel on a single polymethyl methacrylate (PMMA) substrate for on-chip manipulation of magnetic particles (MPs). Using the suitable patterning of the magnet, a spatially varying magnetic force is exerted onto the MPs in the channel, which is pertinent for capturing the MPs at specific locations. The device geometry is optimized using FEM simulations to prevent any blockage in the channel due to the accumulation of the MPs and ease the fabrication process. The <inline-formula> <tex-math notation="LaTeX">\sim</tex-math> </inline-formula>1.5-fold enhancement in the trapping efficiency is observed upon lowering the flow rate from 15 <inline-formula> <tex-math notation="LaTeX">\mu </tex-math> </inline-formula>l/min to 9 <inline-formula> <tex-math notation="LaTeX">\mu </tex-math> </inline-formula>l/min, leading to 94.5% trapping efficiency at a lower flow rate of 9 <inline-formula> <tex-math notation="LaTeX">\mu </tex-math> </inline-formula>l/min. 2022-0173]]></description><subject>Flow velocity</subject><subject>Magnetic devices</subject><subject>Magnetic domains</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>magnetic particle</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic separation</subject><subject>magnetophoresis</subject><subject>Microfluidics</subject><subject>NdFeB</subject><subject>PDMS</subject><subject>Permanent magnet</subject><subject>Permanent magnets</subject><subject>PMMA</subject><subject>Polymethyl methacrylate</subject><subject>Substrates</subject><subject>Trapping</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhosoOKd_QLwIeGtnvtqklzKmmzgcOPAyxPakzdjammSi_97M7sKr88L7ceBJkmuCJ4Tg4v55OVu-TSimbMIo4yLHJ8mIFJykmGTyNGqciVSQTJwnF95vMCacy3yUfE-7Xa_LcIfmtm7SFTjTuZ1uS0CrzttgvwAtdd1C6Pqmc-CtR9PG9ujdhgYt2gC10wEqtNIhgGujGuIo7qCZMba00IZou2DLLaC1031v2_oyOTN66-HqeMfJ-nG2ns7Tl9enxfThJS1pkYc0Z6QyRIpCAqNc0w8KWmNeFNIA50ZKI0jJgXEtqgozTouKUCmyPHqMaDZObofZ3nWfe_BBbbq9a-NHRUWRSZwRSmOKDqnSdd47MKp3dqfdjyJYHQCrP8DqAFgdAcfSzVCyAPCvgCknWLJffvV4Gw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Yadav, Vinit Kumar</creator><creator>Patel, Yogesh M.</creator><creator>Bahga, Supreet Singh</creator><creator>Das, Samaresh</creator><creator>Mallick, Dhiman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4159-1962</orcidid><orcidid>https://orcid.org/0000-0001-8500-7014</orcidid><orcidid>https://orcid.org/0000-0002-6622-6403</orcidid><orcidid>https://orcid.org/0000-0002-6637-2558</orcidid></search><sort><creationdate>20230401</creationdate><title>Compact, High-Performance Positive Magnetophoresis Chip With Integrated Patterned Magnet for Efficient Particle Trapping</title><author>Yadav, Vinit Kumar ; Patel, Yogesh M. ; Bahga, Supreet Singh ; Das, Samaresh ; Mallick, Dhiman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-631df18798e324a2b2eaa04998fe44f88f71c4e34a7dd03429d1287564f831a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Flow velocity</topic><topic>Magnetic devices</topic><topic>Magnetic domains</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>magnetic particle</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic separation</topic><topic>magnetophoresis</topic><topic>Microfluidics</topic><topic>NdFeB</topic><topic>PDMS</topic><topic>Permanent magnet</topic><topic>Permanent magnets</topic><topic>PMMA</topic><topic>Polymethyl methacrylate</topic><topic>Substrates</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Vinit Kumar</creatorcontrib><creatorcontrib>Patel, Yogesh M.</creatorcontrib><creatorcontrib>Bahga, Supreet Singh</creatorcontrib><creatorcontrib>Das, Samaresh</creatorcontrib><creatorcontrib>Mallick, Dhiman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yadav, Vinit Kumar</au><au>Patel, Yogesh M.</au><au>Bahga, Supreet Singh</au><au>Das, Samaresh</au><au>Mallick, Dhiman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact, High-Performance Positive Magnetophoresis Chip With Integrated Patterned Magnet for Efficient Particle Trapping</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>32</volume><issue>2</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract><![CDATA[In this work, we demonstrate a cost-effective, scalable, and rapid technique to fabricate a robust, high-performance on-chip positive magnetophoretic system. The system incorporates a thick patterned permanent magnet and microfluidic channel on a single polymethyl methacrylate (PMMA) substrate for on-chip manipulation of magnetic particles (MPs). Using the suitable patterning of the magnet, a spatially varying magnetic force is exerted onto the MPs in the channel, which is pertinent for capturing the MPs at specific locations. The device geometry is optimized using FEM simulations to prevent any blockage in the channel due to the accumulation of the MPs and ease the fabrication process. The <inline-formula> <tex-math notation="LaTeX">\sim</tex-math> </inline-formula>1.5-fold enhancement in the trapping efficiency is observed upon lowering the flow rate from 15 <inline-formula> <tex-math notation="LaTeX">\mu </tex-math> </inline-formula>l/min to 9 <inline-formula> <tex-math notation="LaTeX">\mu </tex-math> </inline-formula>l/min, leading to 94.5% trapping efficiency at a lower flow rate of 9 <inline-formula> <tex-math notation="LaTeX">\mu </tex-math> </inline-formula>l/min. 2022-0173]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2023.3234760</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4159-1962</orcidid><orcidid>https://orcid.org/0000-0001-8500-7014</orcidid><orcidid>https://orcid.org/0000-0002-6622-6403</orcidid><orcidid>https://orcid.org/0000-0002-6637-2558</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2023-04, Vol.32 (2), p.1-11 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_ieee_primary_10024108 |
source | IEEE Electronic Library (IEL) |
subjects | Flow velocity Magnetic devices Magnetic domains Magnetic fields Magnetic flux magnetic particle Magnetic resonance imaging Magnetic separation magnetophoresis Microfluidics NdFeB PDMS Permanent magnet Permanent magnets PMMA Polymethyl methacrylate Substrates Trapping |
title | Compact, High-Performance Positive Magnetophoresis Chip With Integrated Patterned Magnet for Efficient Particle Trapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact,%20High-Performance%20Positive%20Magnetophoresis%20Chip%20With%20Integrated%20Patterned%20Magnet%20for%20Efficient%20Particle%20Trapping&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Yadav,%20Vinit%20Kumar&rft.date=2023-04-01&rft.volume=32&rft.issue=2&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2023.3234760&rft_dat=%3Cproquest_RIE%3E2795805122%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795805122&rft_id=info:pmid/&rft_ieee_id=10024108&rfr_iscdi=true |