Online Spreading of Topic Tags and Social Behavior
This article explores information spreading in modern online social networks. According to the law of information spread in real social networks, information retweeting is divided into two types: topic retweeting and relationship retweeting. Social behavior is considered as a higher order interactio...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computational social systems 2024-02, Vol.11 (1), p.1277-1288 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1288 |
---|---|
container_issue | 1 |
container_start_page | 1277 |
container_title | IEEE transactions on computational social systems |
container_volume | 11 |
creator | Nian, Fuzhong Ren, Jinhu Yu, Xuelong |
description | This article explores information spreading in modern online social networks. According to the law of information spread in real social networks, information retweeting is divided into two types: topic retweeting and relationship retweeting. Social behavior is considered as a higher order interaction, and the nodal influence effect in the traditional approach is abstracted as part of it for analysis. The process of topic communities being subjected to social behavior is simulated by the social behavior model, and the dynamic retweeting rate is established. A network evolution model is constructed based on the centrality and noncontinuity characteristics of topic communities in the spread process. The social reinforcement effect in information spreading is described in two dimensions by defining topic expansion rate and topic diffusion rate. This work conducts multiple views of analysis and visualization, which provide more results of quantitative aspect. The validity of the model is verified by comparing the model simulation results with real cases and the generalization ability experiments. |
doi_str_mv | 10.1109/TCSS.2023.3235011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10021303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10021303</ieee_id><sourcerecordid>2918608753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-3780d331d79756f4c984892bea1749799d31546ba83f238364b9e981a143e9de3</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWLQ_QHARcD01Ly8zyVtq8QsKXcwI7kI6k6lT6mRMWsF_b4d24erdxbn3wWHsBsQMQNB9NS_LmRQSZygxFwBnbCJRY6aVLs7HLCkjqT4u2TSljRACZJ5rKSZMLvtt13teDtG7puvXPLS8CkNX88qtE3d9w8tQd27LH_2n--lCvGYXrdsmPz3dK_b-_FTNX7PF8uVt_rDIaklql6E2okGERpPOi1bVZJQhufIOtCJN1CDkqlg5g61Eg4VakScDDhR6ajxesbvj7hDD996nnd2EfewPL60kMIUwOscDBUeqjiGl6Fs7xO7LxV8Lwo527GjHjnbsyc6hc3vsdN77f7yQgALxD-ayXTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918608753</pqid></control><display><type>article</type><title>Online Spreading of Topic Tags and Social Behavior</title><source>IEEE Electronic Library (IEL)</source><creator>Nian, Fuzhong ; Ren, Jinhu ; Yu, Xuelong</creator><creatorcontrib>Nian, Fuzhong ; Ren, Jinhu ; Yu, Xuelong</creatorcontrib><description>This article explores information spreading in modern online social networks. According to the law of information spread in real social networks, information retweeting is divided into two types: topic retweeting and relationship retweeting. Social behavior is considered as a higher order interaction, and the nodal influence effect in the traditional approach is abstracted as part of it for analysis. The process of topic communities being subjected to social behavior is simulated by the social behavior model, and the dynamic retweeting rate is established. A network evolution model is constructed based on the centrality and noncontinuity characteristics of topic communities in the spread process. The social reinforcement effect in information spreading is described in two dimensions by defining topic expansion rate and topic diffusion rate. This work conducts multiple views of analysis and visualization, which provide more results of quantitative aspect. The validity of the model is verified by comparing the model simulation results with real cases and the generalization ability experiments.</description><identifier>ISSN: 2329-924X</identifier><identifier>EISSN: 2373-7476</identifier><identifier>DOI: 10.1109/TCSS.2023.3235011</identifier><identifier>CODEN: ITCSGL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Behavioral sciences ; Blogs ; Diffusion rate ; Higher order interactions ; Higher order statistics ; network evolution ; social behavior ; Social factors ; Social networking (online) ; Social networks ; spreading dynamics ; Topology</subject><ispartof>IEEE transactions on computational social systems, 2024-02, Vol.11 (1), p.1277-1288</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-3780d331d79756f4c984892bea1749799d31546ba83f238364b9e981a143e9de3</citedby><cites>FETCH-LOGICAL-c294t-3780d331d79756f4c984892bea1749799d31546ba83f238364b9e981a143e9de3</cites><orcidid>0000-0002-0196-929X ; 0000-0002-2179-0895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10021303$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10021303$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nian, Fuzhong</creatorcontrib><creatorcontrib>Ren, Jinhu</creatorcontrib><creatorcontrib>Yu, Xuelong</creatorcontrib><title>Online Spreading of Topic Tags and Social Behavior</title><title>IEEE transactions on computational social systems</title><addtitle>TCSS</addtitle><description>This article explores information spreading in modern online social networks. According to the law of information spread in real social networks, information retweeting is divided into two types: topic retweeting and relationship retweeting. Social behavior is considered as a higher order interaction, and the nodal influence effect in the traditional approach is abstracted as part of it for analysis. The process of topic communities being subjected to social behavior is simulated by the social behavior model, and the dynamic retweeting rate is established. A network evolution model is constructed based on the centrality and noncontinuity characteristics of topic communities in the spread process. The social reinforcement effect in information spreading is described in two dimensions by defining topic expansion rate and topic diffusion rate. This work conducts multiple views of analysis and visualization, which provide more results of quantitative aspect. The validity of the model is verified by comparing the model simulation results with real cases and the generalization ability experiments.</description><subject>Analytical models</subject><subject>Behavioral sciences</subject><subject>Blogs</subject><subject>Diffusion rate</subject><subject>Higher order interactions</subject><subject>Higher order statistics</subject><subject>network evolution</subject><subject>social behavior</subject><subject>Social factors</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>spreading dynamics</subject><subject>Topology</subject><issn>2329-924X</issn><issn>2373-7476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEURYMoWLQ_QHARcD01Ly8zyVtq8QsKXcwI7kI6k6lT6mRMWsF_b4d24erdxbn3wWHsBsQMQNB9NS_LmRQSZygxFwBnbCJRY6aVLs7HLCkjqT4u2TSljRACZJ5rKSZMLvtt13teDtG7puvXPLS8CkNX88qtE3d9w8tQd27LH_2n--lCvGYXrdsmPz3dK_b-_FTNX7PF8uVt_rDIaklql6E2okGERpPOi1bVZJQhufIOtCJN1CDkqlg5g61Eg4VakScDDhR6ajxesbvj7hDD996nnd2EfewPL60kMIUwOscDBUeqjiGl6Fs7xO7LxV8Lwo527GjHjnbsyc6hc3vsdN77f7yQgALxD-ayXTU</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Nian, Fuzhong</creator><creator>Ren, Jinhu</creator><creator>Yu, Xuelong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0196-929X</orcidid><orcidid>https://orcid.org/0000-0002-2179-0895</orcidid></search><sort><creationdate>20240201</creationdate><title>Online Spreading of Topic Tags and Social Behavior</title><author>Nian, Fuzhong ; Ren, Jinhu ; Yu, Xuelong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-3780d331d79756f4c984892bea1749799d31546ba83f238364b9e981a143e9de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analytical models</topic><topic>Behavioral sciences</topic><topic>Blogs</topic><topic>Diffusion rate</topic><topic>Higher order interactions</topic><topic>Higher order statistics</topic><topic>network evolution</topic><topic>social behavior</topic><topic>Social factors</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>spreading dynamics</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nian, Fuzhong</creatorcontrib><creatorcontrib>Ren, Jinhu</creatorcontrib><creatorcontrib>Yu, Xuelong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational social systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nian, Fuzhong</au><au>Ren, Jinhu</au><au>Yu, Xuelong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Spreading of Topic Tags and Social Behavior</atitle><jtitle>IEEE transactions on computational social systems</jtitle><stitle>TCSS</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>11</volume><issue>1</issue><spage>1277</spage><epage>1288</epage><pages>1277-1288</pages><issn>2329-924X</issn><eissn>2373-7476</eissn><coden>ITCSGL</coden><abstract>This article explores information spreading in modern online social networks. According to the law of information spread in real social networks, information retweeting is divided into two types: topic retweeting and relationship retweeting. Social behavior is considered as a higher order interaction, and the nodal influence effect in the traditional approach is abstracted as part of it for analysis. The process of topic communities being subjected to social behavior is simulated by the social behavior model, and the dynamic retweeting rate is established. A network evolution model is constructed based on the centrality and noncontinuity characteristics of topic communities in the spread process. The social reinforcement effect in information spreading is described in two dimensions by defining topic expansion rate and topic diffusion rate. This work conducts multiple views of analysis and visualization, which provide more results of quantitative aspect. The validity of the model is verified by comparing the model simulation results with real cases and the generalization ability experiments.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCSS.2023.3235011</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0196-929X</orcidid><orcidid>https://orcid.org/0000-0002-2179-0895</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2329-924X |
ispartof | IEEE transactions on computational social systems, 2024-02, Vol.11 (1), p.1277-1288 |
issn | 2329-924X 2373-7476 |
language | eng |
recordid | cdi_ieee_primary_10021303 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Behavioral sciences Blogs Diffusion rate Higher order interactions Higher order statistics network evolution social behavior Social factors Social networking (online) Social networks spreading dynamics Topology |
title | Online Spreading of Topic Tags and Social Behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Spreading%20of%20Topic%20Tags%20and%20Social%20Behavior&rft.jtitle=IEEE%20transactions%20on%20computational%20social%20systems&rft.au=Nian,%20Fuzhong&rft.date=2024-02-01&rft.volume=11&rft.issue=1&rft.spage=1277&rft.epage=1288&rft.pages=1277-1288&rft.issn=2329-924X&rft.eissn=2373-7476&rft.coden=ITCSGL&rft_id=info:doi/10.1109/TCSS.2023.3235011&rft_dat=%3Cproquest_RIE%3E2918608753%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918608753&rft_id=info:pmid/&rft_ieee_id=10021303&rfr_iscdi=true |