Online Spreading of Topic Tags and Social Behavior

This article explores information spreading in modern online social networks. According to the law of information spread in real social networks, information retweeting is divided into two types: topic retweeting and relationship retweeting. Social behavior is considered as a higher order interactio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational social systems 2024-02, Vol.11 (1), p.1277-1288
Hauptverfasser: Nian, Fuzhong, Ren, Jinhu, Yu, Xuelong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1288
container_issue 1
container_start_page 1277
container_title IEEE transactions on computational social systems
container_volume 11
creator Nian, Fuzhong
Ren, Jinhu
Yu, Xuelong
description This article explores information spreading in modern online social networks. According to the law of information spread in real social networks, information retweeting is divided into two types: topic retweeting and relationship retweeting. Social behavior is considered as a higher order interaction, and the nodal influence effect in the traditional approach is abstracted as part of it for analysis. The process of topic communities being subjected to social behavior is simulated by the social behavior model, and the dynamic retweeting rate is established. A network evolution model is constructed based on the centrality and noncontinuity characteristics of topic communities in the spread process. The social reinforcement effect in information spreading is described in two dimensions by defining topic expansion rate and topic diffusion rate. This work conducts multiple views of analysis and visualization, which provide more results of quantitative aspect. The validity of the model is verified by comparing the model simulation results with real cases and the generalization ability experiments.
doi_str_mv 10.1109/TCSS.2023.3235011
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10021303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10021303</ieee_id><sourcerecordid>2918608753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-3780d331d79756f4c984892bea1749799d31546ba83f238364b9e981a143e9de3</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWLQ_QHARcD01Ly8zyVtq8QsKXcwI7kI6k6lT6mRMWsF_b4d24erdxbn3wWHsBsQMQNB9NS_LmRQSZygxFwBnbCJRY6aVLs7HLCkjqT4u2TSljRACZJ5rKSZMLvtt13teDtG7puvXPLS8CkNX88qtE3d9w8tQd27LH_2n--lCvGYXrdsmPz3dK_b-_FTNX7PF8uVt_rDIaklql6E2okGERpPOi1bVZJQhufIOtCJN1CDkqlg5g61Eg4VakScDDhR6ajxesbvj7hDD996nnd2EfewPL60kMIUwOscDBUeqjiGl6Fs7xO7LxV8Lwo527GjHjnbsyc6hc3vsdN77f7yQgALxD-ayXTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918608753</pqid></control><display><type>article</type><title>Online Spreading of Topic Tags and Social Behavior</title><source>IEEE Electronic Library (IEL)</source><creator>Nian, Fuzhong ; Ren, Jinhu ; Yu, Xuelong</creator><creatorcontrib>Nian, Fuzhong ; Ren, Jinhu ; Yu, Xuelong</creatorcontrib><description>This article explores information spreading in modern online social networks. According to the law of information spread in real social networks, information retweeting is divided into two types: topic retweeting and relationship retweeting. Social behavior is considered as a higher order interaction, and the nodal influence effect in the traditional approach is abstracted as part of it for analysis. The process of topic communities being subjected to social behavior is simulated by the social behavior model, and the dynamic retweeting rate is established. A network evolution model is constructed based on the centrality and noncontinuity characteristics of topic communities in the spread process. The social reinforcement effect in information spreading is described in two dimensions by defining topic expansion rate and topic diffusion rate. This work conducts multiple views of analysis and visualization, which provide more results of quantitative aspect. The validity of the model is verified by comparing the model simulation results with real cases and the generalization ability experiments.</description><identifier>ISSN: 2329-924X</identifier><identifier>EISSN: 2373-7476</identifier><identifier>DOI: 10.1109/TCSS.2023.3235011</identifier><identifier>CODEN: ITCSGL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Behavioral sciences ; Blogs ; Diffusion rate ; Higher order interactions ; Higher order statistics ; network evolution ; social behavior ; Social factors ; Social networking (online) ; Social networks ; spreading dynamics ; Topology</subject><ispartof>IEEE transactions on computational social systems, 2024-02, Vol.11 (1), p.1277-1288</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-3780d331d79756f4c984892bea1749799d31546ba83f238364b9e981a143e9de3</citedby><cites>FETCH-LOGICAL-c294t-3780d331d79756f4c984892bea1749799d31546ba83f238364b9e981a143e9de3</cites><orcidid>0000-0002-0196-929X ; 0000-0002-2179-0895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10021303$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10021303$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nian, Fuzhong</creatorcontrib><creatorcontrib>Ren, Jinhu</creatorcontrib><creatorcontrib>Yu, Xuelong</creatorcontrib><title>Online Spreading of Topic Tags and Social Behavior</title><title>IEEE transactions on computational social systems</title><addtitle>TCSS</addtitle><description>This article explores information spreading in modern online social networks. According to the law of information spread in real social networks, information retweeting is divided into two types: topic retweeting and relationship retweeting. Social behavior is considered as a higher order interaction, and the nodal influence effect in the traditional approach is abstracted as part of it for analysis. The process of topic communities being subjected to social behavior is simulated by the social behavior model, and the dynamic retweeting rate is established. A network evolution model is constructed based on the centrality and noncontinuity characteristics of topic communities in the spread process. The social reinforcement effect in information spreading is described in two dimensions by defining topic expansion rate and topic diffusion rate. This work conducts multiple views of analysis and visualization, which provide more results of quantitative aspect. The validity of the model is verified by comparing the model simulation results with real cases and the generalization ability experiments.</description><subject>Analytical models</subject><subject>Behavioral sciences</subject><subject>Blogs</subject><subject>Diffusion rate</subject><subject>Higher order interactions</subject><subject>Higher order statistics</subject><subject>network evolution</subject><subject>social behavior</subject><subject>Social factors</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>spreading dynamics</subject><subject>Topology</subject><issn>2329-924X</issn><issn>2373-7476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEURYMoWLQ_QHARcD01Ly8zyVtq8QsKXcwI7kI6k6lT6mRMWsF_b4d24erdxbn3wWHsBsQMQNB9NS_LmRQSZygxFwBnbCJRY6aVLs7HLCkjqT4u2TSljRACZJ5rKSZMLvtt13teDtG7puvXPLS8CkNX88qtE3d9w8tQd27LH_2n--lCvGYXrdsmPz3dK_b-_FTNX7PF8uVt_rDIaklql6E2okGERpPOi1bVZJQhufIOtCJN1CDkqlg5g61Eg4VakScDDhR6ajxesbvj7hDD996nnd2EfewPL60kMIUwOscDBUeqjiGl6Fs7xO7LxV8Lwo527GjHjnbsyc6hc3vsdN77f7yQgALxD-ayXTU</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Nian, Fuzhong</creator><creator>Ren, Jinhu</creator><creator>Yu, Xuelong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0196-929X</orcidid><orcidid>https://orcid.org/0000-0002-2179-0895</orcidid></search><sort><creationdate>20240201</creationdate><title>Online Spreading of Topic Tags and Social Behavior</title><author>Nian, Fuzhong ; Ren, Jinhu ; Yu, Xuelong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-3780d331d79756f4c984892bea1749799d31546ba83f238364b9e981a143e9de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analytical models</topic><topic>Behavioral sciences</topic><topic>Blogs</topic><topic>Diffusion rate</topic><topic>Higher order interactions</topic><topic>Higher order statistics</topic><topic>network evolution</topic><topic>social behavior</topic><topic>Social factors</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>spreading dynamics</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nian, Fuzhong</creatorcontrib><creatorcontrib>Ren, Jinhu</creatorcontrib><creatorcontrib>Yu, Xuelong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational social systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nian, Fuzhong</au><au>Ren, Jinhu</au><au>Yu, Xuelong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Spreading of Topic Tags and Social Behavior</atitle><jtitle>IEEE transactions on computational social systems</jtitle><stitle>TCSS</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>11</volume><issue>1</issue><spage>1277</spage><epage>1288</epage><pages>1277-1288</pages><issn>2329-924X</issn><eissn>2373-7476</eissn><coden>ITCSGL</coden><abstract>This article explores information spreading in modern online social networks. According to the law of information spread in real social networks, information retweeting is divided into two types: topic retweeting and relationship retweeting. Social behavior is considered as a higher order interaction, and the nodal influence effect in the traditional approach is abstracted as part of it for analysis. The process of topic communities being subjected to social behavior is simulated by the social behavior model, and the dynamic retweeting rate is established. A network evolution model is constructed based on the centrality and noncontinuity characteristics of topic communities in the spread process. The social reinforcement effect in information spreading is described in two dimensions by defining topic expansion rate and topic diffusion rate. This work conducts multiple views of analysis and visualization, which provide more results of quantitative aspect. The validity of the model is verified by comparing the model simulation results with real cases and the generalization ability experiments.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCSS.2023.3235011</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0196-929X</orcidid><orcidid>https://orcid.org/0000-0002-2179-0895</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-924X
ispartof IEEE transactions on computational social systems, 2024-02, Vol.11 (1), p.1277-1288
issn 2329-924X
2373-7476
language eng
recordid cdi_ieee_primary_10021303
source IEEE Electronic Library (IEL)
subjects Analytical models
Behavioral sciences
Blogs
Diffusion rate
Higher order interactions
Higher order statistics
network evolution
social behavior
Social factors
Social networking (online)
Social networks
spreading dynamics
Topology
title Online Spreading of Topic Tags and Social Behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Spreading%20of%20Topic%20Tags%20and%20Social%20Behavior&rft.jtitle=IEEE%20transactions%20on%20computational%20social%20systems&rft.au=Nian,%20Fuzhong&rft.date=2024-02-01&rft.volume=11&rft.issue=1&rft.spage=1277&rft.epage=1288&rft.pages=1277-1288&rft.issn=2329-924X&rft.eissn=2373-7476&rft.coden=ITCSGL&rft_id=info:doi/10.1109/TCSS.2023.3235011&rft_dat=%3Cproquest_RIE%3E2918608753%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918608753&rft_id=info:pmid/&rft_ieee_id=10021303&rfr_iscdi=true