Power Transformer Characterization and Design Optimization Environment
Power Transformers are essential part of all AC Power Grids. This work proposes a characterization and design optimization environment for Power Transformers to increase efficiency while decreasing core volume. It utilizes a Finite-Element State-Space models in conjunction with Artificial Neural Net...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2023-05, Vol.59 (5), p.1-1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 59 |
creator | Arkadan, A. A. Gutierrez-McCoy, M.A. |
description | Power Transformers are essential part of all AC Power Grids. This work proposes a characterization and design optimization environment for Power Transformers to increase efficiency while decreasing core volume. It utilizes a Finite-Element State-Space models in conjunction with Artificial Neural Networks and Particle Swarm Optimization. A case study of a 42 MVA, 118/13.8kV distribution power transformer was conducted, and transformer performance characteristics were compared to test data for verification. Next, the optimization environment was used to decrease the transformer volume and improve its efficiency. In addition, the Taguchi orthogonal arrays method was used to reduce computational costs. |
doi_str_mv | 10.1109/TMAG.2023.3237750 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10018366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10018366</ieee_id><sourcerecordid>2806217283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-67bbd8d624c4cc8fad76b180971e63e6be63da8aaed256aaca37b59f1d269e903</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKs_QHAx4HrGvCaPZaltFSp1Udchk8loipPUZKrorzelFdzcF-ecCx8A1whWCEF5t36aLCoMMakIJpzX8ASMkKSohJDJUzCCEIlSUkbPwUVKm7zSGsERmD-HLxuLddQ-dSH2eZ6-6ajNYKP70YMLvtC-Le5tcq--WG0H1__dZ_7TxeB764dLcNbp92Svjn0MXuaz9fShXK4Wj9PJsjRY0qFkvGla0TJMDTVGdLrlrEECSo4sI5Y1ubZaaG1bXDOtjSa8qWWHWsyklZCMwe0hdxvDx86mQW3CLvr8UmEBGUYcC5JV6KAyMaQUbae20fU6fisE1R6X2uNSe1zqiCt7bg4eZ639p8_cCGPkFxJcZ5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806217283</pqid></control><display><type>article</type><title>Power Transformer Characterization and Design Optimization Environment</title><source>IEEE Electronic Library (IEL)</source><creator>Arkadan, A. A. ; Gutierrez-McCoy, M.A.</creator><creatorcontrib>Arkadan, A. A. ; Gutierrez-McCoy, M.A.</creatorcontrib><description>Power Transformers are essential part of all AC Power Grids. This work proposes a characterization and design optimization environment for Power Transformers to increase efficiency while decreasing core volume. It utilizes a Finite-Element State-Space models in conjunction with Artificial Neural Networks and Particle Swarm Optimization. A case study of a 42 MVA, 118/13.8kV distribution power transformer was conducted, and transformer performance characteristics were compared to test data for verification. Next, the optimization environment was used to decrease the transformer volume and improve its efficiency. In addition, the Taguchi orthogonal arrays method was used to reduce computational costs.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2023.3237750</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Design Optimization ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Particle Swarm Optimization ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">State Space Models ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Taguchi Orthogonal Arrays ; Artificial neural networks ; Computational modeling ; Design optimization ; Finite element method ; Magnetism ; Mathematical models ; Optimization ; Orthogonal arrays ; Particle swarm optimization ; Power transformers ; Taguchi methods ; Transformers ; Windings</subject><ispartof>IEEE transactions on magnetics, 2023-05, Vol.59 (5), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-67bbd8d624c4cc8fad76b180971e63e6be63da8aaed256aaca37b59f1d269e903</citedby><cites>FETCH-LOGICAL-c294t-67bbd8d624c4cc8fad76b180971e63e6be63da8aaed256aaca37b59f1d269e903</cites><orcidid>0000-0003-3178-7742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10018366$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10018366$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Arkadan, A. A.</creatorcontrib><creatorcontrib>Gutierrez-McCoy, M.A.</creatorcontrib><title>Power Transformer Characterization and Design Optimization Environment</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Power Transformers are essential part of all AC Power Grids. This work proposes a characterization and design optimization environment for Power Transformers to increase efficiency while decreasing core volume. It utilizes a Finite-Element State-Space models in conjunction with Artificial Neural Networks and Particle Swarm Optimization. A case study of a 42 MVA, 118/13.8kV distribution power transformer was conducted, and transformer performance characteristics were compared to test data for verification. Next, the optimization environment was used to decrease the transformer volume and improve its efficiency. In addition, the Taguchi orthogonal arrays method was used to reduce computational costs.</description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Design Optimization</subject><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Particle Swarm Optimization</subject><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">State Space Models</subject><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Taguchi Orthogonal Arrays</subject><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Design optimization</subject><subject>Finite element method</subject><subject>Magnetism</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Orthogonal arrays</subject><subject>Particle swarm optimization</subject><subject>Power transformers</subject><subject>Taguchi methods</subject><subject>Transformers</subject><subject>Windings</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWKs_QHAx4HrGvCaPZaltFSp1Udchk8loipPUZKrorzelFdzcF-ecCx8A1whWCEF5t36aLCoMMakIJpzX8ASMkKSohJDJUzCCEIlSUkbPwUVKm7zSGsERmD-HLxuLddQ-dSH2eZ6-6ajNYKP70YMLvtC-Le5tcq--WG0H1__dZ_7TxeB764dLcNbp92Svjn0MXuaz9fShXK4Wj9PJsjRY0qFkvGla0TJMDTVGdLrlrEECSo4sI5Y1ubZaaG1bXDOtjSa8qWWHWsyklZCMwe0hdxvDx86mQW3CLvr8UmEBGUYcC5JV6KAyMaQUbae20fU6fisE1R6X2uNSe1zqiCt7bg4eZ639p8_cCGPkFxJcZ5o</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Arkadan, A. A.</creator><creator>Gutierrez-McCoy, M.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3178-7742</orcidid></search><sort><creationdate>20230501</creationdate><title>Power Transformer Characterization and Design Optimization Environment</title><author>Arkadan, A. A. ; Gutierrez-McCoy, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-67bbd8d624c4cc8fad76b180971e63e6be63da8aaed256aaca37b59f1d269e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Design Optimization</topic><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Particle Swarm Optimization</topic><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">State Space Models</topic><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Taguchi Orthogonal Arrays</topic><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Design optimization</topic><topic>Finite element method</topic><topic>Magnetism</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Orthogonal arrays</topic><topic>Particle swarm optimization</topic><topic>Power transformers</topic><topic>Taguchi methods</topic><topic>Transformers</topic><topic>Windings</topic><toplevel>online_resources</toplevel><creatorcontrib>Arkadan, A. A.</creatorcontrib><creatorcontrib>Gutierrez-McCoy, M.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arkadan, A. A.</au><au>Gutierrez-McCoy, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Transformer Characterization and Design Optimization Environment</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>59</volume><issue>5</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Power Transformers are essential part of all AC Power Grids. This work proposes a characterization and design optimization environment for Power Transformers to increase efficiency while decreasing core volume. It utilizes a Finite-Element State-Space models in conjunction with Artificial Neural Networks and Particle Swarm Optimization. A case study of a 42 MVA, 118/13.8kV distribution power transformer was conducted, and transformer performance characteristics were compared to test data for verification. Next, the optimization environment was used to decrease the transformer volume and improve its efficiency. In addition, the Taguchi orthogonal arrays method was used to reduce computational costs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2023.3237750</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3178-7742</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2023-05, Vol.59 (5), p.1-1 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_10018366 |
source | IEEE Electronic Library (IEL) |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Design Optimization <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Particle Swarm Optimization <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">State Space Models <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Taguchi Orthogonal Arrays Artificial neural networks Computational modeling Design optimization Finite element method Magnetism Mathematical models Optimization Orthogonal arrays Particle swarm optimization Power transformers Taguchi methods Transformers Windings |
title | Power Transformer Characterization and Design Optimization Environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Transformer%20Characterization%20and%20Design%20Optimization%20Environment&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Arkadan,%20A.%20A.&rft.date=2023-05-01&rft.volume=59&rft.issue=5&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2023.3237750&rft_dat=%3Cproquest_RIE%3E2806217283%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806217283&rft_id=info:pmid/&rft_ieee_id=10018366&rfr_iscdi=true |