Power Transformer Characterization and Design Optimization Environment

Power Transformers are essential part of all AC Power Grids. This work proposes a characterization and design optimization environment for Power Transformers to increase efficiency while decreasing core volume. It utilizes a Finite-Element State-Space models in conjunction with Artificial Neural Net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2023-05, Vol.59 (5), p.1-1
Hauptverfasser: Arkadan, A. A., Gutierrez-McCoy, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 5
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 59
creator Arkadan, A. A.
Gutierrez-McCoy, M.A.
description Power Transformers are essential part of all AC Power Grids. This work proposes a characterization and design optimization environment for Power Transformers to increase efficiency while decreasing core volume. It utilizes a Finite-Element State-Space models in conjunction with Artificial Neural Networks and Particle Swarm Optimization. A case study of a 42 MVA, 118/13.8kV distribution power transformer was conducted, and transformer performance characteristics were compared to test data for verification. Next, the optimization environment was used to decrease the transformer volume and improve its efficiency. In addition, the Taguchi orthogonal arrays method was used to reduce computational costs.
doi_str_mv 10.1109/TMAG.2023.3237750
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10018366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10018366</ieee_id><sourcerecordid>2806217283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-67bbd8d624c4cc8fad76b180971e63e6be63da8aaed256aaca37b59f1d269e903</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKs_QHAx4HrGvCaPZaltFSp1Udchk8loipPUZKrorzelFdzcF-ecCx8A1whWCEF5t36aLCoMMakIJpzX8ASMkKSohJDJUzCCEIlSUkbPwUVKm7zSGsERmD-HLxuLddQ-dSH2eZ6-6ajNYKP70YMLvtC-Le5tcq--WG0H1__dZ_7TxeB764dLcNbp92Svjn0MXuaz9fShXK4Wj9PJsjRY0qFkvGla0TJMDTVGdLrlrEECSo4sI5Y1ubZaaG1bXDOtjSa8qWWHWsyklZCMwe0hdxvDx86mQW3CLvr8UmEBGUYcC5JV6KAyMaQUbae20fU6fisE1R6X2uNSe1zqiCt7bg4eZ639p8_cCGPkFxJcZ5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806217283</pqid></control><display><type>article</type><title>Power Transformer Characterization and Design Optimization Environment</title><source>IEEE Electronic Library (IEL)</source><creator>Arkadan, A. A. ; Gutierrez-McCoy, M.A.</creator><creatorcontrib>Arkadan, A. A. ; Gutierrez-McCoy, M.A.</creatorcontrib><description>Power Transformers are essential part of all AC Power Grids. This work proposes a characterization and design optimization environment for Power Transformers to increase efficiency while decreasing core volume. It utilizes a Finite-Element State-Space models in conjunction with Artificial Neural Networks and Particle Swarm Optimization. A case study of a 42 MVA, 118/13.8kV distribution power transformer was conducted, and transformer performance characteristics were compared to test data for verification. Next, the optimization environment was used to decrease the transformer volume and improve its efficiency. In addition, the Taguchi orthogonal arrays method was used to reduce computational costs.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2023.3237750</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Design Optimization ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Particle Swarm Optimization ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;State Space Models ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Taguchi Orthogonal Arrays ; Artificial neural networks ; Computational modeling ; Design optimization ; Finite element method ; Magnetism ; Mathematical models ; Optimization ; Orthogonal arrays ; Particle swarm optimization ; Power transformers ; Taguchi methods ; Transformers ; Windings</subject><ispartof>IEEE transactions on magnetics, 2023-05, Vol.59 (5), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-67bbd8d624c4cc8fad76b180971e63e6be63da8aaed256aaca37b59f1d269e903</citedby><cites>FETCH-LOGICAL-c294t-67bbd8d624c4cc8fad76b180971e63e6be63da8aaed256aaca37b59f1d269e903</cites><orcidid>0000-0003-3178-7742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10018366$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10018366$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Arkadan, A. A.</creatorcontrib><creatorcontrib>Gutierrez-McCoy, M.A.</creatorcontrib><title>Power Transformer Characterization and Design Optimization Environment</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Power Transformers are essential part of all AC Power Grids. This work proposes a characterization and design optimization environment for Power Transformers to increase efficiency while decreasing core volume. It utilizes a Finite-Element State-Space models in conjunction with Artificial Neural Networks and Particle Swarm Optimization. A case study of a 42 MVA, 118/13.8kV distribution power transformer was conducted, and transformer performance characteristics were compared to test data for verification. Next, the optimization environment was used to decrease the transformer volume and improve its efficiency. In addition, the Taguchi orthogonal arrays method was used to reduce computational costs.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Design Optimization</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Particle Swarm Optimization</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;State Space Models</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Taguchi Orthogonal Arrays</subject><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Design optimization</subject><subject>Finite element method</subject><subject>Magnetism</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Orthogonal arrays</subject><subject>Particle swarm optimization</subject><subject>Power transformers</subject><subject>Taguchi methods</subject><subject>Transformers</subject><subject>Windings</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWKs_QHAx4HrGvCaPZaltFSp1Udchk8loipPUZKrorzelFdzcF-ecCx8A1whWCEF5t36aLCoMMakIJpzX8ASMkKSohJDJUzCCEIlSUkbPwUVKm7zSGsERmD-HLxuLddQ-dSH2eZ6-6ajNYKP70YMLvtC-Le5tcq--WG0H1__dZ_7TxeB764dLcNbp92Svjn0MXuaz9fShXK4Wj9PJsjRY0qFkvGla0TJMDTVGdLrlrEECSo4sI5Y1ubZaaG1bXDOtjSa8qWWHWsyklZCMwe0hdxvDx86mQW3CLvr8UmEBGUYcC5JV6KAyMaQUbae20fU6fisE1R6X2uNSe1zqiCt7bg4eZ639p8_cCGPkFxJcZ5o</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Arkadan, A. A.</creator><creator>Gutierrez-McCoy, M.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3178-7742</orcidid></search><sort><creationdate>20230501</creationdate><title>Power Transformer Characterization and Design Optimization Environment</title><author>Arkadan, A. A. ; Gutierrez-McCoy, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-67bbd8d624c4cc8fad76b180971e63e6be63da8aaed256aaca37b59f1d269e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Design Optimization</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Particle Swarm Optimization</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;State Space Models</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Taguchi Orthogonal Arrays</topic><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Design optimization</topic><topic>Finite element method</topic><topic>Magnetism</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Orthogonal arrays</topic><topic>Particle swarm optimization</topic><topic>Power transformers</topic><topic>Taguchi methods</topic><topic>Transformers</topic><topic>Windings</topic><toplevel>online_resources</toplevel><creatorcontrib>Arkadan, A. A.</creatorcontrib><creatorcontrib>Gutierrez-McCoy, M.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arkadan, A. A.</au><au>Gutierrez-McCoy, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Transformer Characterization and Design Optimization Environment</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>59</volume><issue>5</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Power Transformers are essential part of all AC Power Grids. This work proposes a characterization and design optimization environment for Power Transformers to increase efficiency while decreasing core volume. It utilizes a Finite-Element State-Space models in conjunction with Artificial Neural Networks and Particle Swarm Optimization. A case study of a 42 MVA, 118/13.8kV distribution power transformer was conducted, and transformer performance characteristics were compared to test data for verification. Next, the optimization environment was used to decrease the transformer volume and improve its efficiency. In addition, the Taguchi orthogonal arrays method was used to reduce computational costs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2023.3237750</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3178-7742</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2023-05, Vol.59 (5), p.1-1
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_10018366
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Design Optimization
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Particle Swarm Optimization
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">State Space Models
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Taguchi Orthogonal Arrays
Artificial neural networks
Computational modeling
Design optimization
Finite element method
Magnetism
Mathematical models
Optimization
Orthogonal arrays
Particle swarm optimization
Power transformers
Taguchi methods
Transformers
Windings
title Power Transformer Characterization and Design Optimization Environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Transformer%20Characterization%20and%20Design%20Optimization%20Environment&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Arkadan,%20A.%20A.&rft.date=2023-05-01&rft.volume=59&rft.issue=5&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2023.3237750&rft_dat=%3Cproquest_RIE%3E2806217283%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806217283&rft_id=info:pmid/&rft_ieee_id=10018366&rfr_iscdi=true