Interpreting Graph-based Sybil Detection Methods as Low-Pass Filtering

Online social networks (OSNs) are threatened by Sybil attacks, which create fake accounts (also called Sybils) on OSNs and use them for various malicious activities. Therefore, Sybil detection is a fundamental task for OSN security. Most existing Sybil detection methods are based on the graph struct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2023-01, Vol.18, p.1-1
Hauptverfasser: Furutani, Satoshi, Shibahara, Toshiki, Akiyama, Mitsuaki, Aida, Masaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on information forensics and security
container_volume 18
creator Furutani, Satoshi
Shibahara, Toshiki
Akiyama, Mitsuaki
Aida, Masaki
description Online social networks (OSNs) are threatened by Sybil attacks, which create fake accounts (also called Sybils) on OSNs and use them for various malicious activities. Therefore, Sybil detection is a fundamental task for OSN security. Most existing Sybil detection methods are based on the graph structure of OSNs, and various methods have been proposed recently. However, although almost all methods have been compared experimentally in terms of detection performance and noise robustness, theoretical understanding of them is still lacking. In this study, we show that existing graph-based Sybil detection methods can be interpreted in a unified framework of low-pass filtering. This framework enables us to theoretically compare and analyze each method from two perspectives: filter kernel properties and the spectrum of shift matrices. Our analysis reveals that the detection performance of each method depends on the effectiveness of the low-pass filtering. Furthermore, on the basis of the analysis, we propose a novel Sybil detection method called SybilHeat. Numerical experiments on synthetic graphs and real social networks demonstrate that SybilHeat performs consistently well on graphs with various structural properties. This study lays a theoretical foundation for graph-based Sybil detection and leads to a better understanding of Sybil detection methods.
doi_str_mv 10.1109/TIFS.2023.3237364
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10018255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10018255</ieee_id><sourcerecordid>2769398642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-4b69efc63e6c759ac4adb477f3b920ec344cc36b59f88ff1f7f94dd66b6749e83</originalsourceid><addsrcrecordid>eNpNkE1LAzEQQIMoWKs_QPCw4HlrvjbZHKW6tVBRaD2HJDuxW-rumqRI_71bWsTTzOG9GXgI3RI8IQSrh9W8Wk4opmzCKJNM8DM0IkUhcoEpOf_bCbtEVzFuMOaciHKEqnmbIPQBUtN-ZrNg-nVuTYQ6W-5ts82eIIFLTddmr5DWXR0zE7NF95O_mxizqtkO9mBeowtvthFuTnOMPqrn1fQlX7zN5tPHRe44ZinnVijwTjAQThbKOG5qy6X0zCqKwTHOnWPCFsqXpffES694XQthheQKSjZG98e7fei-dxCT3nS70A4vNZVCMVUKTgeKHCkXuhgDeN2H5suEvSZYH3LpQy59yKVPuQbn7ug0APCPx6SkRcF-Ad_oZlI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769398642</pqid></control><display><type>article</type><title>Interpreting Graph-based Sybil Detection Methods as Low-Pass Filtering</title><source>IEEE Electronic Library (IEL)</source><creator>Furutani, Satoshi ; Shibahara, Toshiki ; Akiyama, Mitsuaki ; Aida, Masaki</creator><creatorcontrib>Furutani, Satoshi ; Shibahara, Toshiki ; Akiyama, Mitsuaki ; Aida, Masaki</creatorcontrib><description>Online social networks (OSNs) are threatened by Sybil attacks, which create fake accounts (also called Sybils) on OSNs and use them for various malicious activities. Therefore, Sybil detection is a fundamental task for OSN security. Most existing Sybil detection methods are based on the graph structure of OSNs, and various methods have been proposed recently. However, although almost all methods have been compared experimentally in terms of detection performance and noise robustness, theoretical understanding of them is still lacking. In this study, we show that existing graph-based Sybil detection methods can be interpreted in a unified framework of low-pass filtering. This framework enables us to theoretically compare and analyze each method from two perspectives: filter kernel properties and the spectrum of shift matrices. Our analysis reveals that the detection performance of each method depends on the effectiveness of the low-pass filtering. Furthermore, on the basis of the analysis, we propose a novel Sybil detection method called SybilHeat. Numerical experiments on synthetic graphs and real social networks demonstrate that SybilHeat performs consistently well on graphs with various structural properties. This study lays a theoretical foundation for graph-based Sybil detection and leads to a better understanding of Sybil detection methods.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2023.3237364</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation algorithms ; Behavioral sciences ; Belief propagation ; Feature extraction ; graph signal processing ; Graphs ; Kernel ; Low pass filters ; Online social networks ; Robustness (mathematics) ; Social networking (online) ; Social networks ; Sybil detection ; Symmetric matrices</subject><ispartof>IEEE transactions on information forensics and security, 2023-01, Vol.18, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-4b69efc63e6c759ac4adb477f3b920ec344cc36b59f88ff1f7f94dd66b6749e83</citedby><cites>FETCH-LOGICAL-c403t-4b69efc63e6c759ac4adb477f3b920ec344cc36b59f88ff1f7f94dd66b6749e83</cites><orcidid>0000-0001-7052-8562 ; 0000-0003-0565-8912 ; 0000-0001-5614-6269 ; 0000-0002-2192-4355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10018255$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Furutani, Satoshi</creatorcontrib><creatorcontrib>Shibahara, Toshiki</creatorcontrib><creatorcontrib>Akiyama, Mitsuaki</creatorcontrib><creatorcontrib>Aida, Masaki</creatorcontrib><title>Interpreting Graph-based Sybil Detection Methods as Low-Pass Filtering</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Online social networks (OSNs) are threatened by Sybil attacks, which create fake accounts (also called Sybils) on OSNs and use them for various malicious activities. Therefore, Sybil detection is a fundamental task for OSN security. Most existing Sybil detection methods are based on the graph structure of OSNs, and various methods have been proposed recently. However, although almost all methods have been compared experimentally in terms of detection performance and noise robustness, theoretical understanding of them is still lacking. In this study, we show that existing graph-based Sybil detection methods can be interpreted in a unified framework of low-pass filtering. This framework enables us to theoretically compare and analyze each method from two perspectives: filter kernel properties and the spectrum of shift matrices. Our analysis reveals that the detection performance of each method depends on the effectiveness of the low-pass filtering. Furthermore, on the basis of the analysis, we propose a novel Sybil detection method called SybilHeat. Numerical experiments on synthetic graphs and real social networks demonstrate that SybilHeat performs consistently well on graphs with various structural properties. This study lays a theoretical foundation for graph-based Sybil detection and leads to a better understanding of Sybil detection methods.</description><subject>Approximation algorithms</subject><subject>Behavioral sciences</subject><subject>Belief propagation</subject><subject>Feature extraction</subject><subject>graph signal processing</subject><subject>Graphs</subject><subject>Kernel</subject><subject>Low pass filters</subject><subject>Online social networks</subject><subject>Robustness (mathematics)</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Sybil detection</subject><subject>Symmetric matrices</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQQIMoWKs_QPCw4HlrvjbZHKW6tVBRaD2HJDuxW-rumqRI_71bWsTTzOG9GXgI3RI8IQSrh9W8Wk4opmzCKJNM8DM0IkUhcoEpOf_bCbtEVzFuMOaciHKEqnmbIPQBUtN-ZrNg-nVuTYQ6W-5ts82eIIFLTddmr5DWXR0zE7NF95O_mxizqtkO9mBeowtvthFuTnOMPqrn1fQlX7zN5tPHRe44ZinnVijwTjAQThbKOG5qy6X0zCqKwTHOnWPCFsqXpffES694XQthheQKSjZG98e7fei-dxCT3nS70A4vNZVCMVUKTgeKHCkXuhgDeN2H5suEvSZYH3LpQy59yKVPuQbn7ug0APCPx6SkRcF-Ad_oZlI</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Furutani, Satoshi</creator><creator>Shibahara, Toshiki</creator><creator>Akiyama, Mitsuaki</creator><creator>Aida, Masaki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7052-8562</orcidid><orcidid>https://orcid.org/0000-0003-0565-8912</orcidid><orcidid>https://orcid.org/0000-0001-5614-6269</orcidid><orcidid>https://orcid.org/0000-0002-2192-4355</orcidid></search><sort><creationdate>20230101</creationdate><title>Interpreting Graph-based Sybil Detection Methods as Low-Pass Filtering</title><author>Furutani, Satoshi ; Shibahara, Toshiki ; Akiyama, Mitsuaki ; Aida, Masaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-4b69efc63e6c759ac4adb477f3b920ec344cc36b59f88ff1f7f94dd66b6749e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation algorithms</topic><topic>Behavioral sciences</topic><topic>Belief propagation</topic><topic>Feature extraction</topic><topic>graph signal processing</topic><topic>Graphs</topic><topic>Kernel</topic><topic>Low pass filters</topic><topic>Online social networks</topic><topic>Robustness (mathematics)</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Sybil detection</topic><topic>Symmetric matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furutani, Satoshi</creatorcontrib><creatorcontrib>Shibahara, Toshiki</creatorcontrib><creatorcontrib>Akiyama, Mitsuaki</creatorcontrib><creatorcontrib>Aida, Masaki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furutani, Satoshi</au><au>Shibahara, Toshiki</au><au>Akiyama, Mitsuaki</au><au>Aida, Masaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpreting Graph-based Sybil Detection Methods as Low-Pass Filtering</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>18</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Online social networks (OSNs) are threatened by Sybil attacks, which create fake accounts (also called Sybils) on OSNs and use them for various malicious activities. Therefore, Sybil detection is a fundamental task for OSN security. Most existing Sybil detection methods are based on the graph structure of OSNs, and various methods have been proposed recently. However, although almost all methods have been compared experimentally in terms of detection performance and noise robustness, theoretical understanding of them is still lacking. In this study, we show that existing graph-based Sybil detection methods can be interpreted in a unified framework of low-pass filtering. This framework enables us to theoretically compare and analyze each method from two perspectives: filter kernel properties and the spectrum of shift matrices. Our analysis reveals that the detection performance of each method depends on the effectiveness of the low-pass filtering. Furthermore, on the basis of the analysis, we propose a novel Sybil detection method called SybilHeat. Numerical experiments on synthetic graphs and real social networks demonstrate that SybilHeat performs consistently well on graphs with various structural properties. This study lays a theoretical foundation for graph-based Sybil detection and leads to a better understanding of Sybil detection methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2023.3237364</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7052-8562</orcidid><orcidid>https://orcid.org/0000-0003-0565-8912</orcidid><orcidid>https://orcid.org/0000-0001-5614-6269</orcidid><orcidid>https://orcid.org/0000-0002-2192-4355</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2023-01, Vol.18, p.1-1
issn 1556-6013
1556-6021
language eng
recordid cdi_ieee_primary_10018255
source IEEE Electronic Library (IEL)
subjects Approximation algorithms
Behavioral sciences
Belief propagation
Feature extraction
graph signal processing
Graphs
Kernel
Low pass filters
Online social networks
Robustness (mathematics)
Social networking (online)
Social networks
Sybil detection
Symmetric matrices
title Interpreting Graph-based Sybil Detection Methods as Low-Pass Filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpreting%20Graph-based%20Sybil%20Detection%20Methods%20as%20Low-Pass%20Filtering&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Furutani,%20Satoshi&rft.date=2023-01-01&rft.volume=18&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2023.3237364&rft_dat=%3Cproquest_ieee_%3E2769398642%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769398642&rft_id=info:pmid/&rft_ieee_id=10018255&rfr_iscdi=true