Improved Particle Swarm Optimization for Laser Cutting Path Planning

This research focuses on the long empty cutting path problem during the laser cutting process by employing an improved proximity method to establish the starting point set in complex closed graphics. Specifically, this work improves the particle swarm algorithm and proposes the Levy Flight, power fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Qu, Pengju, Du, Feilong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Qu, Pengju
Du, Feilong
description This research focuses on the long empty cutting path problem during the laser cutting process by employing an improved proximity method to establish the starting point set in complex closed graphics. Specifically, this work improves the particle swarm algorithm and proposes the Levy Flight, power function, and Singer map employed particle swarm optimization (LPSPSO) to avoid the disadvantages of the standard particle swarm optimization (PSO) algorithm. Specifically, the comprehensive prospect-regret theoretical model evaluation value is used as the fitness value to guide the algorithm's evolution and adaptively adjust the parameters in the LPSPSO algorithm, including the inertia weight power function, the learning factors, and the chaotic random number based on the Singer chaotic map. Additionally, the Levy flight is introduced to disturb the particles and prevent local optimization. This is achieved by adjusting the Levy flight threshold based on the distance between the particles to prevent the Levy flight from starting prematurely and increasing the calculation burden. To verify the performance of the LPSPSO algorithm, it was challenged against three state-of-the-art algorithms on 22 benchmark test instances and a laser cutting problem, with the results revealing that the LPSPSO algorithm has a better performance and can be used to solve the empty length of the laser cutting path problem.
doi_str_mv 10.1109/ACCESS.2023.3236006
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10015022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10015022</ieee_id><doaj_id>oai_doaj_org_article_55abf4c269f14aae99da9a0bebdf4b13</doaj_id><sourcerecordid>2766633787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-93e1e356fe03dfe34e3798b0330f89b629ed5194030896e302b4d636f2b6d3013</originalsourceid><addsrcrecordid>eNpNUE1Lw0AQDaJgqf0Fegh4bp3dSTbZY4lVC4UWqudlk52tKU1SN6miv96tKdK5zAfvvZl5QXDLYMIYyIdpls3W6wkHjhPkKADERTDgTMgxxiguz-rrYNS2W_CR-lGcDILHebV3zSeZcKVdVxY7Ctdf2lXhct-VVfmju7KpQ9u4cKFbcmF26Lqy3nh09x6udrqufXcTXFm9a2l0ysPg7Wn2mr2MF8vneTZdjIsIZDeWSIwwFpYAjSWMCBOZ5oAINpW54JJMzGQECKkUhMDzyAgUlufCIDAcBvNe1zR6q_aurLT7Vo0u1d-gcRt1ekLFsc5tVHAhLYu0JimNlhpyyo2NcoZe677X8u9_HKjt1LY5uNqfr3gihEBM0sSjsEcVrmlbR_Z_KwN1dF_17quj--rkvmfd9aySiM4YwGLgHH8BUl1_cQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766633787</pqid></control><display><type>article</type><title>Improved Particle Swarm Optimization for Laser Cutting Path Planning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Qu, Pengju ; Du, Feilong</creator><creatorcontrib>Qu, Pengju ; Du, Feilong</creatorcontrib><description>This research focuses on the long empty cutting path problem during the laser cutting process by employing an improved proximity method to establish the starting point set in complex closed graphics. Specifically, this work improves the particle swarm algorithm and proposes the Levy Flight, power function, and Singer map employed particle swarm optimization (LPSPSO) to avoid the disadvantages of the standard particle swarm optimization (PSO) algorithm. Specifically, the comprehensive prospect-regret theoretical model evaluation value is used as the fitness value to guide the algorithm's evolution and adaptively adjust the parameters in the LPSPSO algorithm, including the inertia weight power function, the learning factors, and the chaotic random number based on the Singer chaotic map. Additionally, the Levy flight is introduced to disturb the particles and prevent local optimization. This is achieved by adjusting the Levy flight threshold based on the distance between the particles to prevent the Levy flight from starting prematurely and increasing the calculation burden. To verify the performance of the LPSPSO algorithm, it was challenged against three state-of-the-art algorithms on 22 benchmark test instances and a laser cutting problem, with the results revealing that the LPSPSO algorithm has a better performance and can be used to solve the empty length of the laser cutting path problem.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3236006</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Chaos ; chaotic random number ; comprehensive prospect-regret theory ; Evolutionary algorithms ; Graphics ; improved particle swarm optimization ; improved proximity method ; Laser beam cutting ; Laser cutting path planning ; Laser modes ; Laser theory ; Lasers ; Levy flight threshold ; Local optimization ; Machine learning ; Optimization ; Particle swarm optimization ; Path planning ; Psychology ; Random numbers</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-93e1e356fe03dfe34e3798b0330f89b629ed5194030896e302b4d636f2b6d3013</citedby><cites>FETCH-LOGICAL-c409t-93e1e356fe03dfe34e3798b0330f89b629ed5194030896e302b4d636f2b6d3013</cites><orcidid>0000-0002-3180-1105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10015022$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Qu, Pengju</creatorcontrib><creatorcontrib>Du, Feilong</creatorcontrib><title>Improved Particle Swarm Optimization for Laser Cutting Path Planning</title><title>IEEE access</title><addtitle>Access</addtitle><description>This research focuses on the long empty cutting path problem during the laser cutting process by employing an improved proximity method to establish the starting point set in complex closed graphics. Specifically, this work improves the particle swarm algorithm and proposes the Levy Flight, power function, and Singer map employed particle swarm optimization (LPSPSO) to avoid the disadvantages of the standard particle swarm optimization (PSO) algorithm. Specifically, the comprehensive prospect-regret theoretical model evaluation value is used as the fitness value to guide the algorithm's evolution and adaptively adjust the parameters in the LPSPSO algorithm, including the inertia weight power function, the learning factors, and the chaotic random number based on the Singer chaotic map. Additionally, the Levy flight is introduced to disturb the particles and prevent local optimization. This is achieved by adjusting the Levy flight threshold based on the distance between the particles to prevent the Levy flight from starting prematurely and increasing the calculation burden. To verify the performance of the LPSPSO algorithm, it was challenged against three state-of-the-art algorithms on 22 benchmark test instances and a laser cutting problem, with the results revealing that the LPSPSO algorithm has a better performance and can be used to solve the empty length of the laser cutting path problem.</description><subject>Algorithms</subject><subject>Chaos</subject><subject>chaotic random number</subject><subject>comprehensive prospect-regret theory</subject><subject>Evolutionary algorithms</subject><subject>Graphics</subject><subject>improved particle swarm optimization</subject><subject>improved proximity method</subject><subject>Laser beam cutting</subject><subject>Laser cutting path planning</subject><subject>Laser modes</subject><subject>Laser theory</subject><subject>Lasers</subject><subject>Levy flight threshold</subject><subject>Local optimization</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Path planning</subject><subject>Psychology</subject><subject>Random numbers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1Lw0AQDaJgqf0Fegh4bp3dSTbZY4lVC4UWqudlk52tKU1SN6miv96tKdK5zAfvvZl5QXDLYMIYyIdpls3W6wkHjhPkKADERTDgTMgxxiguz-rrYNS2W_CR-lGcDILHebV3zSeZcKVdVxY7Ctdf2lXhct-VVfmju7KpQ9u4cKFbcmF26Lqy3nh09x6udrqufXcTXFm9a2l0ysPg7Wn2mr2MF8vneTZdjIsIZDeWSIwwFpYAjSWMCBOZ5oAINpW54JJMzGQECKkUhMDzyAgUlufCIDAcBvNe1zR6q_aurLT7Vo0u1d-gcRt1ekLFsc5tVHAhLYu0JimNlhpyyo2NcoZe677X8u9_HKjt1LY5uNqfr3gihEBM0sSjsEcVrmlbR_Z_KwN1dF_17quj--rkvmfd9aySiM4YwGLgHH8BUl1_cQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Qu, Pengju</creator><creator>Du, Feilong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3180-1105</orcidid></search><sort><creationdate>20230101</creationdate><title>Improved Particle Swarm Optimization for Laser Cutting Path Planning</title><author>Qu, Pengju ; Du, Feilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-93e1e356fe03dfe34e3798b0330f89b629ed5194030896e302b4d636f2b6d3013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Chaos</topic><topic>chaotic random number</topic><topic>comprehensive prospect-regret theory</topic><topic>Evolutionary algorithms</topic><topic>Graphics</topic><topic>improved particle swarm optimization</topic><topic>improved proximity method</topic><topic>Laser beam cutting</topic><topic>Laser cutting path planning</topic><topic>Laser modes</topic><topic>Laser theory</topic><topic>Lasers</topic><topic>Levy flight threshold</topic><topic>Local optimization</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Path planning</topic><topic>Psychology</topic><topic>Random numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Pengju</creatorcontrib><creatorcontrib>Du, Feilong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Pengju</au><au>Du, Feilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Particle Swarm Optimization for Laser Cutting Path Planning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This research focuses on the long empty cutting path problem during the laser cutting process by employing an improved proximity method to establish the starting point set in complex closed graphics. Specifically, this work improves the particle swarm algorithm and proposes the Levy Flight, power function, and Singer map employed particle swarm optimization (LPSPSO) to avoid the disadvantages of the standard particle swarm optimization (PSO) algorithm. Specifically, the comprehensive prospect-regret theoretical model evaluation value is used as the fitness value to guide the algorithm's evolution and adaptively adjust the parameters in the LPSPSO algorithm, including the inertia weight power function, the learning factors, and the chaotic random number based on the Singer chaotic map. Additionally, the Levy flight is introduced to disturb the particles and prevent local optimization. This is achieved by adjusting the Levy flight threshold based on the distance between the particles to prevent the Levy flight from starting prematurely and increasing the calculation burden. To verify the performance of the LPSPSO algorithm, it was challenged against three state-of-the-art algorithms on 22 benchmark test instances and a laser cutting problem, with the results revealing that the LPSPSO algorithm has a better performance and can be used to solve the empty length of the laser cutting path problem.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3236006</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3180-1105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10015022
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Chaos
chaotic random number
comprehensive prospect-regret theory
Evolutionary algorithms
Graphics
improved particle swarm optimization
improved proximity method
Laser beam cutting
Laser cutting path planning
Laser modes
Laser theory
Lasers
Levy flight threshold
Local optimization
Machine learning
Optimization
Particle swarm optimization
Path planning
Psychology
Random numbers
title Improved Particle Swarm Optimization for Laser Cutting Path Planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Particle%20Swarm%20Optimization%20for%20Laser%20Cutting%20Path%20Planning&rft.jtitle=IEEE%20access&rft.au=Qu,%20Pengju&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3236006&rft_dat=%3Cproquest_ieee_%3E2766633787%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766633787&rft_id=info:pmid/&rft_ieee_id=10015022&rft_doaj_id=oai_doaj_org_article_55abf4c269f14aae99da9a0bebdf4b13&rfr_iscdi=true