LAFD-Net: Learning with Noisy Pseudo Labels for Semi-Supervised Bearing Fault Diagnosis

Fault Diagnosis for the rolling bearing is an important field that has received increasing attention in recent years. The main challenge for this task is the lack of labeled data. Existing works circumvent this problem with pseudo labels generated from labeled data. However, these pseudo labels are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-01, p.1-1
Hauptverfasser: Jian, Yifan, Chen, Zhi, Lei, Yinjie, He, Zhengxi, Zhao, Yang, He, Liang, Luo, Wei, Chen, Xuekun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE sensors journal
container_volume
creator Jian, Yifan
Chen, Zhi
Lei, Yinjie
He, Zhengxi
Zhao, Yang
He, Liang
Luo, Wei
Chen, Xuekun
description Fault Diagnosis for the rolling bearing is an important field that has received increasing attention in recent years. The main challenge for this task is the lack of labeled data. Existing works circumvent this problem with pseudo labels generated from labeled data. However, these pseudo labels are noisy even with consistency check or confidence-based filtering due to the minimal amount of training data. To solve this problem, a novel Label-level Anti-noise Fault Diagnosis Network (LAFD-Net) is proposed in this paper. Specifically, we propose an Online Asymptotic Label Updating (OALU) strategy which contains two updating stages: self-correction stage and cross-correction stage. The proposed OALU can stably and reliably generate new corrected pseudo labels, gradually replacing the old noisy ones. The LAFD-Net adopts a Student-Teacher architecture. For such a Student-Teacher model, we propose a Consistency Enhancement (CE) loss to strengthen the feature consistency between student and teacher networks, aiming to achieve more efficient use of plentiful unlabeled data via feature regularization. Finally, a series of experiments were conducted using the University of Cincinnati Intelligent Maintenance System (IMS) Center dataset and the Case Western Reserve University (CWRU) bearing dataset. The experimental results demonstrate that the proposed semi-supervised learning schemes outperformed existing state-of-the-art methods with the same percentage of labeled data samples.
doi_str_mv 10.1109/JSEN.2023.3233957
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10014694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10014694</ieee_id><sourcerecordid>10014694</sourcerecordid><originalsourceid>FETCH-ieee_primary_100146943</originalsourceid><addsrcrecordid>eNqFjsuKwkAQAOegYHx8gOChfyDZmUxiyN58hUVCECLoTUbSai8xkelE8e9V2Pue6lAUlBBjJT2lZPy1zleZ50tfe9rXOg6jjnBUqKUb6GjfE33mXylVHIWRI3bpLFm6GTbfkKKxFVVneFBzgawmfsKGsS1qSM0RS4ZTbSHHK7l5e0N7J8YC5u_qEyWmLRtYkjlXNRMPRfdkSsbRHwdikqy2ix-XEPFws3Q19nlQ749gGgf6H_0C8FI_tg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LAFD-Net: Learning with Noisy Pseudo Labels for Semi-Supervised Bearing Fault Diagnosis</title><source>IEEE Electronic Library (IEL)</source><creator>Jian, Yifan ; Chen, Zhi ; Lei, Yinjie ; He, Zhengxi ; Zhao, Yang ; He, Liang ; Luo, Wei ; Chen, Xuekun</creator><creatorcontrib>Jian, Yifan ; Chen, Zhi ; Lei, Yinjie ; He, Zhengxi ; Zhao, Yang ; He, Liang ; Luo, Wei ; Chen, Xuekun</creatorcontrib><description>Fault Diagnosis for the rolling bearing is an important field that has received increasing attention in recent years. The main challenge for this task is the lack of labeled data. Existing works circumvent this problem with pseudo labels generated from labeled data. However, these pseudo labels are noisy even with consistency check or confidence-based filtering due to the minimal amount of training data. To solve this problem, a novel Label-level Anti-noise Fault Diagnosis Network (LAFD-Net) is proposed in this paper. Specifically, we propose an Online Asymptotic Label Updating (OALU) strategy which contains two updating stages: self-correction stage and cross-correction stage. The proposed OALU can stably and reliably generate new corrected pseudo labels, gradually replacing the old noisy ones. The LAFD-Net adopts a Student-Teacher architecture. For such a Student-Teacher model, we propose a Consistency Enhancement (CE) loss to strengthen the feature consistency between student and teacher networks, aiming to achieve more efficient use of plentiful unlabeled data via feature regularization. Finally, a series of experiments were conducted using the University of Cincinnati Intelligent Maintenance System (IMS) Center dataset and the Case Western Reserve University (CWRU) bearing dataset. The experimental results demonstrate that the proposed semi-supervised learning schemes outperformed existing state-of-the-art methods with the same percentage of labeled data samples.</description><identifier>ISSN: 1530-437X</identifier><identifier>DOI: 10.1109/JSEN.2023.3233957</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bearing fault ; Data models ; Deep learning ; Fault diagnosis ; Feature extraction ; learning with noisy data ; Noise measurement ; semi-supervised Learning ; Sensors ; student-teacher model ; Training</subject><ispartof>IEEE sensors journal, 2023-01, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5820-9080 ; 0000-0002-2683-384X ; 0000-0002-2683-384X ; 0000-0002-8211-3046 ; 0000-0001-6856-3342 ; 0000-0002-2683-384X ; 0000-0002-2683-384X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10014694$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10014694$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jian, Yifan</creatorcontrib><creatorcontrib>Chen, Zhi</creatorcontrib><creatorcontrib>Lei, Yinjie</creatorcontrib><creatorcontrib>He, Zhengxi</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>He, Liang</creatorcontrib><creatorcontrib>Luo, Wei</creatorcontrib><creatorcontrib>Chen, Xuekun</creatorcontrib><title>LAFD-Net: Learning with Noisy Pseudo Labels for Semi-Supervised Bearing Fault Diagnosis</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Fault Diagnosis for the rolling bearing is an important field that has received increasing attention in recent years. The main challenge for this task is the lack of labeled data. Existing works circumvent this problem with pseudo labels generated from labeled data. However, these pseudo labels are noisy even with consistency check or confidence-based filtering due to the minimal amount of training data. To solve this problem, a novel Label-level Anti-noise Fault Diagnosis Network (LAFD-Net) is proposed in this paper. Specifically, we propose an Online Asymptotic Label Updating (OALU) strategy which contains two updating stages: self-correction stage and cross-correction stage. The proposed OALU can stably and reliably generate new corrected pseudo labels, gradually replacing the old noisy ones. The LAFD-Net adopts a Student-Teacher architecture. For such a Student-Teacher model, we propose a Consistency Enhancement (CE) loss to strengthen the feature consistency between student and teacher networks, aiming to achieve more efficient use of plentiful unlabeled data via feature regularization. Finally, a series of experiments were conducted using the University of Cincinnati Intelligent Maintenance System (IMS) Center dataset and the Case Western Reserve University (CWRU) bearing dataset. The experimental results demonstrate that the proposed semi-supervised learning schemes outperformed existing state-of-the-art methods with the same percentage of labeled data samples.</description><subject>Bearing fault</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>learning with noisy data</subject><subject>Noise measurement</subject><subject>semi-supervised Learning</subject><subject>Sensors</subject><subject>student-teacher model</subject><subject>Training</subject><issn>1530-437X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFjsuKwkAQAOegYHx8gOChfyDZmUxiyN58hUVCECLoTUbSai8xkelE8e9V2Pue6lAUlBBjJT2lZPy1zleZ50tfe9rXOg6jjnBUqKUb6GjfE33mXylVHIWRI3bpLFm6GTbfkKKxFVVneFBzgawmfsKGsS1qSM0RS4ZTbSHHK7l5e0N7J8YC5u_qEyWmLRtYkjlXNRMPRfdkSsbRHwdikqy2ix-XEPFws3Q19nlQ749gGgf6H_0C8FI_tg</recordid><startdate>20230110</startdate><enddate>20230110</enddate><creator>Jian, Yifan</creator><creator>Chen, Zhi</creator><creator>Lei, Yinjie</creator><creator>He, Zhengxi</creator><creator>Zhao, Yang</creator><creator>He, Liang</creator><creator>Luo, Wei</creator><creator>Chen, Xuekun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-5820-9080</orcidid><orcidid>https://orcid.org/0000-0002-2683-384X</orcidid><orcidid>https://orcid.org/0000-0002-2683-384X</orcidid><orcidid>https://orcid.org/0000-0002-8211-3046</orcidid><orcidid>https://orcid.org/0000-0001-6856-3342</orcidid><orcidid>https://orcid.org/0000-0002-2683-384X</orcidid><orcidid>https://orcid.org/0000-0002-2683-384X</orcidid></search><sort><creationdate>20230110</creationdate><title>LAFD-Net: Learning with Noisy Pseudo Labels for Semi-Supervised Bearing Fault Diagnosis</title><author>Jian, Yifan ; Chen, Zhi ; Lei, Yinjie ; He, Zhengxi ; Zhao, Yang ; He, Liang ; Luo, Wei ; Chen, Xuekun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_100146943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bearing fault</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>learning with noisy data</topic><topic>Noise measurement</topic><topic>semi-supervised Learning</topic><topic>Sensors</topic><topic>student-teacher model</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jian, Yifan</creatorcontrib><creatorcontrib>Chen, Zhi</creatorcontrib><creatorcontrib>Lei, Yinjie</creatorcontrib><creatorcontrib>He, Zhengxi</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>He, Liang</creatorcontrib><creatorcontrib>Luo, Wei</creatorcontrib><creatorcontrib>Chen, Xuekun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jian, Yifan</au><au>Chen, Zhi</au><au>Lei, Yinjie</au><au>He, Zhengxi</au><au>Zhao, Yang</au><au>He, Liang</au><au>Luo, Wei</au><au>Chen, Xuekun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LAFD-Net: Learning with Noisy Pseudo Labels for Semi-Supervised Bearing Fault Diagnosis</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-01-10</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><coden>ISJEAZ</coden><abstract>Fault Diagnosis for the rolling bearing is an important field that has received increasing attention in recent years. The main challenge for this task is the lack of labeled data. Existing works circumvent this problem with pseudo labels generated from labeled data. However, these pseudo labels are noisy even with consistency check or confidence-based filtering due to the minimal amount of training data. To solve this problem, a novel Label-level Anti-noise Fault Diagnosis Network (LAFD-Net) is proposed in this paper. Specifically, we propose an Online Asymptotic Label Updating (OALU) strategy which contains two updating stages: self-correction stage and cross-correction stage. The proposed OALU can stably and reliably generate new corrected pseudo labels, gradually replacing the old noisy ones. The LAFD-Net adopts a Student-Teacher architecture. For such a Student-Teacher model, we propose a Consistency Enhancement (CE) loss to strengthen the feature consistency between student and teacher networks, aiming to achieve more efficient use of plentiful unlabeled data via feature regularization. Finally, a series of experiments were conducted using the University of Cincinnati Intelligent Maintenance System (IMS) Center dataset and the Case Western Reserve University (CWRU) bearing dataset. The experimental results demonstrate that the proposed semi-supervised learning schemes outperformed existing state-of-the-art methods with the same percentage of labeled data samples.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2023.3233957</doi><orcidid>https://orcid.org/0000-0002-5820-9080</orcidid><orcidid>https://orcid.org/0000-0002-2683-384X</orcidid><orcidid>https://orcid.org/0000-0002-2683-384X</orcidid><orcidid>https://orcid.org/0000-0002-8211-3046</orcidid><orcidid>https://orcid.org/0000-0001-6856-3342</orcidid><orcidid>https://orcid.org/0000-0002-2683-384X</orcidid><orcidid>https://orcid.org/0000-0002-2683-384X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-01, p.1-1
issn 1530-437X
language eng
recordid cdi_ieee_primary_10014694
source IEEE Electronic Library (IEL)
subjects Bearing fault
Data models
Deep learning
Fault diagnosis
Feature extraction
learning with noisy data
Noise measurement
semi-supervised Learning
Sensors
student-teacher model
Training
title LAFD-Net: Learning with Noisy Pseudo Labels for Semi-Supervised Bearing Fault Diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LAFD-Net:%20Learning%20with%20Noisy%20Pseudo%20Labels%20for%20Semi-Supervised%20Bearing%20Fault%20Diagnosis&rft.jtitle=IEEE%20sensors%20journal&rft.au=Jian,%20Yifan&rft.date=2023-01-10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3233957&rft_dat=%3Cieee_RIE%3E10014694%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10014694&rfr_iscdi=true