Selfish-Aware and Learning-Aided Computation Offloading for Edge-Cloud Collaboration Network
Mobile-edge computing (MEC) raises the problem of selfish user devices that utilize less computing resources than expected to execute offloading tasks or maliciously discard computation tasks. However, most of the existing work either focused on the task offloading or concentrated on the trust mecha...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2023-06, Vol.10 (11), p.9953-9965 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9965 |
---|---|
container_issue | 11 |
container_start_page | 9953 |
container_title | IEEE internet of things journal |
container_volume | 10 |
creator | Zhao, Ping Yang, Ziyi Mu, Yaqiong Zhang, Guanglin |
description | Mobile-edge computing (MEC) raises the problem of selfish user devices that utilize less computing resources than expected to execute offloading tasks or maliciously discard computation tasks. However, most of the existing work either focused on the task offloading or concentrated on the trust mechanism in MEC systems. By jointly considering the two challenges, in this article, we propose a selfish-aware and learning-aided computation offloading scheme for edge-cloud collaboration network. Specifically, we first design a selfishness evaluation mechanism to evaluate the selfishness of the user devices based on the historical interaction records of the edge-cloud collaboration network. Then, we construct the task offloading model which introduces the selfishness evaluation mechanism to suppress the selfish user devices. On this basis, we further formalize the selfish-aware task offloading as an optimization problem of the weighted sum of time latency and energy consumption. Thereafter, we take one step further formalizing the optimization problem as a Markov decision process (MDP) and design a task offloading algorithm based on deep reinforcement learning (DRL) to find the optimized task offloading decision. The simulation results demonstrate that our work can decrease the time latency and energy consumption as well as suppress the selfish user devices. |
doi_str_mv | 10.1109/JIOT.2023.3235351 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10012417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10012417</ieee_id><sourcerecordid>2814571929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-7cb579e53dbeddd086517e9a5c4dab7ed3ee0b96b42fbf684175657c7658093d3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsNT-AMFDwHPqfmR3s8cSqlaKPVhvwrLJztbUNFs3CcV_b0J66GkG5nlnhgehe4LnhGD19LbabOcUUzZnlHHGyRWaUEZlnAhBry_6WzRrmj3GuI9xosQEfX1A5crmO16cTIDI1DZagwl1We_iRWnBRpk_HLvWtKWvo41zlTe2H0bOh2hpdxBnle8GqqpM7sPIvUN78uHnDt04UzUwO9cp-nxebrPXeL15WWWLdVxQlbSxLHIuFXBmc7DW4lRwIkEZXiTW5BIsA8C5EnlCXe5EmhDJBZeFFDzFilk2RY_j3mPwvx00rd77LtT9SU1TknBJFFU9RUaqCL5pAjh9DOXBhD9NsB486sGjHjzqs8c-8zBmSgC44DGh_RfsH2Y2bsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814571929</pqid></control><display><type>article</type><title>Selfish-Aware and Learning-Aided Computation Offloading for Edge-Cloud Collaboration Network</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Ping ; Yang, Ziyi ; Mu, Yaqiong ; Zhang, Guanglin</creator><creatorcontrib>Zhao, Ping ; Yang, Ziyi ; Mu, Yaqiong ; Zhang, Guanglin</creatorcontrib><description>Mobile-edge computing (MEC) raises the problem of selfish user devices that utilize less computing resources than expected to execute offloading tasks or maliciously discard computation tasks. However, most of the existing work either focused on the task offloading or concentrated on the trust mechanism in MEC systems. By jointly considering the two challenges, in this article, we propose a selfish-aware and learning-aided computation offloading scheme for edge-cloud collaboration network. Specifically, we first design a selfishness evaluation mechanism to evaluate the selfishness of the user devices based on the historical interaction records of the edge-cloud collaboration network. Then, we construct the task offloading model which introduces the selfishness evaluation mechanism to suppress the selfish user devices. On this basis, we further formalize the selfish-aware task offloading as an optimization problem of the weighted sum of time latency and energy consumption. Thereafter, we take one step further formalizing the optimization problem as a Markov decision process (MDP) and design a task offloading algorithm based on deep reinforcement learning (DRL) to find the optimized task offloading decision. The simulation results demonstrate that our work can decrease the time latency and energy consumption as well as suppress the selfish user devices.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3235351</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cloud computing ; Collaboration ; Computation offloading ; Computational modeling ; Cooperation ; Deep learning ; Deep reinforcement learning (DRL) ; Edge computing ; Energy consumption ; Markov processes ; Mobile computing ; mobile-edge computing (MEC) ; Optimization ; Selfishness ; selfishness evaluation mechanism ; Servers ; Task analysis ; task offloading</subject><ispartof>IEEE internet of things journal, 2023-06, Vol.10 (11), p.9953-9965</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-7cb579e53dbeddd086517e9a5c4dab7ed3ee0b96b42fbf684175657c7658093d3</citedby><cites>FETCH-LOGICAL-c294t-7cb579e53dbeddd086517e9a5c4dab7ed3ee0b96b42fbf684175657c7658093d3</cites><orcidid>0000-0002-7461-377X ; 0000-0003-4095-6843 ; 0000-0003-0907-9926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10012417$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10012417$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Ping</creatorcontrib><creatorcontrib>Yang, Ziyi</creatorcontrib><creatorcontrib>Mu, Yaqiong</creatorcontrib><creatorcontrib>Zhang, Guanglin</creatorcontrib><title>Selfish-Aware and Learning-Aided Computation Offloading for Edge-Cloud Collaboration Network</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Mobile-edge computing (MEC) raises the problem of selfish user devices that utilize less computing resources than expected to execute offloading tasks or maliciously discard computation tasks. However, most of the existing work either focused on the task offloading or concentrated on the trust mechanism in MEC systems. By jointly considering the two challenges, in this article, we propose a selfish-aware and learning-aided computation offloading scheme for edge-cloud collaboration network. Specifically, we first design a selfishness evaluation mechanism to evaluate the selfishness of the user devices based on the historical interaction records of the edge-cloud collaboration network. Then, we construct the task offloading model which introduces the selfishness evaluation mechanism to suppress the selfish user devices. On this basis, we further formalize the selfish-aware task offloading as an optimization problem of the weighted sum of time latency and energy consumption. Thereafter, we take one step further formalizing the optimization problem as a Markov decision process (MDP) and design a task offloading algorithm based on deep reinforcement learning (DRL) to find the optimized task offloading decision. The simulation results demonstrate that our work can decrease the time latency and energy consumption as well as suppress the selfish user devices.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Collaboration</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Cooperation</subject><subject>Deep learning</subject><subject>Deep reinforcement learning (DRL)</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Markov processes</subject><subject>Mobile computing</subject><subject>mobile-edge computing (MEC)</subject><subject>Optimization</subject><subject>Selfishness</subject><subject>selfishness evaluation mechanism</subject><subject>Servers</subject><subject>Task analysis</subject><subject>task offloading</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsNT-AMFDwHPqfmR3s8cSqlaKPVhvwrLJztbUNFs3CcV_b0J66GkG5nlnhgehe4LnhGD19LbabOcUUzZnlHHGyRWaUEZlnAhBry_6WzRrmj3GuI9xosQEfX1A5crmO16cTIDI1DZagwl1We_iRWnBRpk_HLvWtKWvo41zlTe2H0bOh2hpdxBnle8GqqpM7sPIvUN78uHnDt04UzUwO9cp-nxebrPXeL15WWWLdVxQlbSxLHIuFXBmc7DW4lRwIkEZXiTW5BIsA8C5EnlCXe5EmhDJBZeFFDzFilk2RY_j3mPwvx00rd77LtT9SU1TknBJFFU9RUaqCL5pAjh9DOXBhD9NsB486sGjHjzqs8c-8zBmSgC44DGh_RfsH2Y2bsQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zhao, Ping</creator><creator>Yang, Ziyi</creator><creator>Mu, Yaqiong</creator><creator>Zhang, Guanglin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7461-377X</orcidid><orcidid>https://orcid.org/0000-0003-4095-6843</orcidid><orcidid>https://orcid.org/0000-0003-0907-9926</orcidid></search><sort><creationdate>20230601</creationdate><title>Selfish-Aware and Learning-Aided Computation Offloading for Edge-Cloud Collaboration Network</title><author>Zhao, Ping ; Yang, Ziyi ; Mu, Yaqiong ; Zhang, Guanglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-7cb579e53dbeddd086517e9a5c4dab7ed3ee0b96b42fbf684175657c7658093d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Collaboration</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Cooperation</topic><topic>Deep learning</topic><topic>Deep reinforcement learning (DRL)</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Markov processes</topic><topic>Mobile computing</topic><topic>mobile-edge computing (MEC)</topic><topic>Optimization</topic><topic>Selfishness</topic><topic>selfishness evaluation mechanism</topic><topic>Servers</topic><topic>Task analysis</topic><topic>task offloading</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ping</creatorcontrib><creatorcontrib>Yang, Ziyi</creatorcontrib><creatorcontrib>Mu, Yaqiong</creatorcontrib><creatorcontrib>Zhang, Guanglin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Ping</au><au>Yang, Ziyi</au><au>Mu, Yaqiong</au><au>Zhang, Guanglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selfish-Aware and Learning-Aided Computation Offloading for Edge-Cloud Collaboration Network</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>10</volume><issue>11</issue><spage>9953</spage><epage>9965</epage><pages>9953-9965</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Mobile-edge computing (MEC) raises the problem of selfish user devices that utilize less computing resources than expected to execute offloading tasks or maliciously discard computation tasks. However, most of the existing work either focused on the task offloading or concentrated on the trust mechanism in MEC systems. By jointly considering the two challenges, in this article, we propose a selfish-aware and learning-aided computation offloading scheme for edge-cloud collaboration network. Specifically, we first design a selfishness evaluation mechanism to evaluate the selfishness of the user devices based on the historical interaction records of the edge-cloud collaboration network. Then, we construct the task offloading model which introduces the selfishness evaluation mechanism to suppress the selfish user devices. On this basis, we further formalize the selfish-aware task offloading as an optimization problem of the weighted sum of time latency and energy consumption. Thereafter, we take one step further formalizing the optimization problem as a Markov decision process (MDP) and design a task offloading algorithm based on deep reinforcement learning (DRL) to find the optimized task offloading decision. The simulation results demonstrate that our work can decrease the time latency and energy consumption as well as suppress the selfish user devices.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3235351</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7461-377X</orcidid><orcidid>https://orcid.org/0000-0003-4095-6843</orcidid><orcidid>https://orcid.org/0000-0003-0907-9926</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2023-06, Vol.10 (11), p.9953-9965 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_10012417 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Cloud computing Collaboration Computation offloading Computational modeling Cooperation Deep learning Deep reinforcement learning (DRL) Edge computing Energy consumption Markov processes Mobile computing mobile-edge computing (MEC) Optimization Selfishness selfishness evaluation mechanism Servers Task analysis task offloading |
title | Selfish-Aware and Learning-Aided Computation Offloading for Edge-Cloud Collaboration Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selfish-Aware%20and%20Learning-Aided%20Computation%20Offloading%20for%20Edge-Cloud%20Collaboration%20Network&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zhao,%20Ping&rft.date=2023-06-01&rft.volume=10&rft.issue=11&rft.spage=9953&rft.epage=9965&rft.pages=9953-9965&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3235351&rft_dat=%3Cproquest_RIE%3E2814571929%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814571929&rft_id=info:pmid/&rft_ieee_id=10012417&rfr_iscdi=true |