Selfish-Aware and Learning-Aided Computation Offloading for Edge-Cloud Collaboration Network

Mobile-edge computing (MEC) raises the problem of selfish user devices that utilize less computing resources than expected to execute offloading tasks or maliciously discard computation tasks. However, most of the existing work either focused on the task offloading or concentrated on the trust mecha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2023-06, Vol.10 (11), p.9953-9965
Hauptverfasser: Zhao, Ping, Yang, Ziyi, Mu, Yaqiong, Zhang, Guanglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9965
container_issue 11
container_start_page 9953
container_title IEEE internet of things journal
container_volume 10
creator Zhao, Ping
Yang, Ziyi
Mu, Yaqiong
Zhang, Guanglin
description Mobile-edge computing (MEC) raises the problem of selfish user devices that utilize less computing resources than expected to execute offloading tasks or maliciously discard computation tasks. However, most of the existing work either focused on the task offloading or concentrated on the trust mechanism in MEC systems. By jointly considering the two challenges, in this article, we propose a selfish-aware and learning-aided computation offloading scheme for edge-cloud collaboration network. Specifically, we first design a selfishness evaluation mechanism to evaluate the selfishness of the user devices based on the historical interaction records of the edge-cloud collaboration network. Then, we construct the task offloading model which introduces the selfishness evaluation mechanism to suppress the selfish user devices. On this basis, we further formalize the selfish-aware task offloading as an optimization problem of the weighted sum of time latency and energy consumption. Thereafter, we take one step further formalizing the optimization problem as a Markov decision process (MDP) and design a task offloading algorithm based on deep reinforcement learning (DRL) to find the optimized task offloading decision. The simulation results demonstrate that our work can decrease the time latency and energy consumption as well as suppress the selfish user devices.
doi_str_mv 10.1109/JIOT.2023.3235351
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10012417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10012417</ieee_id><sourcerecordid>2814571929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-7cb579e53dbeddd086517e9a5c4dab7ed3ee0b96b42fbf684175657c7658093d3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsNT-AMFDwHPqfmR3s8cSqlaKPVhvwrLJztbUNFs3CcV_b0J66GkG5nlnhgehe4LnhGD19LbabOcUUzZnlHHGyRWaUEZlnAhBry_6WzRrmj3GuI9xosQEfX1A5crmO16cTIDI1DZagwl1We_iRWnBRpk_HLvWtKWvo41zlTe2H0bOh2hpdxBnle8GqqpM7sPIvUN78uHnDt04UzUwO9cp-nxebrPXeL15WWWLdVxQlbSxLHIuFXBmc7DW4lRwIkEZXiTW5BIsA8C5EnlCXe5EmhDJBZeFFDzFilk2RY_j3mPwvx00rd77LtT9SU1TknBJFFU9RUaqCL5pAjh9DOXBhD9NsB486sGjHjzqs8c-8zBmSgC44DGh_RfsH2Y2bsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814571929</pqid></control><display><type>article</type><title>Selfish-Aware and Learning-Aided Computation Offloading for Edge-Cloud Collaboration Network</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Ping ; Yang, Ziyi ; Mu, Yaqiong ; Zhang, Guanglin</creator><creatorcontrib>Zhao, Ping ; Yang, Ziyi ; Mu, Yaqiong ; Zhang, Guanglin</creatorcontrib><description>Mobile-edge computing (MEC) raises the problem of selfish user devices that utilize less computing resources than expected to execute offloading tasks or maliciously discard computation tasks. However, most of the existing work either focused on the task offloading or concentrated on the trust mechanism in MEC systems. By jointly considering the two challenges, in this article, we propose a selfish-aware and learning-aided computation offloading scheme for edge-cloud collaboration network. Specifically, we first design a selfishness evaluation mechanism to evaluate the selfishness of the user devices based on the historical interaction records of the edge-cloud collaboration network. Then, we construct the task offloading model which introduces the selfishness evaluation mechanism to suppress the selfish user devices. On this basis, we further formalize the selfish-aware task offloading as an optimization problem of the weighted sum of time latency and energy consumption. Thereafter, we take one step further formalizing the optimization problem as a Markov decision process (MDP) and design a task offloading algorithm based on deep reinforcement learning (DRL) to find the optimized task offloading decision. The simulation results demonstrate that our work can decrease the time latency and energy consumption as well as suppress the selfish user devices.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3235351</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cloud computing ; Collaboration ; Computation offloading ; Computational modeling ; Cooperation ; Deep learning ; Deep reinforcement learning (DRL) ; Edge computing ; Energy consumption ; Markov processes ; Mobile computing ; mobile-edge computing (MEC) ; Optimization ; Selfishness ; selfishness evaluation mechanism ; Servers ; Task analysis ; task offloading</subject><ispartof>IEEE internet of things journal, 2023-06, Vol.10 (11), p.9953-9965</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-7cb579e53dbeddd086517e9a5c4dab7ed3ee0b96b42fbf684175657c7658093d3</citedby><cites>FETCH-LOGICAL-c294t-7cb579e53dbeddd086517e9a5c4dab7ed3ee0b96b42fbf684175657c7658093d3</cites><orcidid>0000-0002-7461-377X ; 0000-0003-4095-6843 ; 0000-0003-0907-9926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10012417$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10012417$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Ping</creatorcontrib><creatorcontrib>Yang, Ziyi</creatorcontrib><creatorcontrib>Mu, Yaqiong</creatorcontrib><creatorcontrib>Zhang, Guanglin</creatorcontrib><title>Selfish-Aware and Learning-Aided Computation Offloading for Edge-Cloud Collaboration Network</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Mobile-edge computing (MEC) raises the problem of selfish user devices that utilize less computing resources than expected to execute offloading tasks or maliciously discard computation tasks. However, most of the existing work either focused on the task offloading or concentrated on the trust mechanism in MEC systems. By jointly considering the two challenges, in this article, we propose a selfish-aware and learning-aided computation offloading scheme for edge-cloud collaboration network. Specifically, we first design a selfishness evaluation mechanism to evaluate the selfishness of the user devices based on the historical interaction records of the edge-cloud collaboration network. Then, we construct the task offloading model which introduces the selfishness evaluation mechanism to suppress the selfish user devices. On this basis, we further formalize the selfish-aware task offloading as an optimization problem of the weighted sum of time latency and energy consumption. Thereafter, we take one step further formalizing the optimization problem as a Markov decision process (MDP) and design a task offloading algorithm based on deep reinforcement learning (DRL) to find the optimized task offloading decision. The simulation results demonstrate that our work can decrease the time latency and energy consumption as well as suppress the selfish user devices.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Collaboration</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Cooperation</subject><subject>Deep learning</subject><subject>Deep reinforcement learning (DRL)</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Markov processes</subject><subject>Mobile computing</subject><subject>mobile-edge computing (MEC)</subject><subject>Optimization</subject><subject>Selfishness</subject><subject>selfishness evaluation mechanism</subject><subject>Servers</subject><subject>Task analysis</subject><subject>task offloading</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsNT-AMFDwHPqfmR3s8cSqlaKPVhvwrLJztbUNFs3CcV_b0J66GkG5nlnhgehe4LnhGD19LbabOcUUzZnlHHGyRWaUEZlnAhBry_6WzRrmj3GuI9xosQEfX1A5crmO16cTIDI1DZagwl1We_iRWnBRpk_HLvWtKWvo41zlTe2H0bOh2hpdxBnle8GqqpM7sPIvUN78uHnDt04UzUwO9cp-nxebrPXeL15WWWLdVxQlbSxLHIuFXBmc7DW4lRwIkEZXiTW5BIsA8C5EnlCXe5EmhDJBZeFFDzFilk2RY_j3mPwvx00rd77LtT9SU1TknBJFFU9RUaqCL5pAjh9DOXBhD9NsB486sGjHjzqs8c-8zBmSgC44DGh_RfsH2Y2bsQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zhao, Ping</creator><creator>Yang, Ziyi</creator><creator>Mu, Yaqiong</creator><creator>Zhang, Guanglin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7461-377X</orcidid><orcidid>https://orcid.org/0000-0003-4095-6843</orcidid><orcidid>https://orcid.org/0000-0003-0907-9926</orcidid></search><sort><creationdate>20230601</creationdate><title>Selfish-Aware and Learning-Aided Computation Offloading for Edge-Cloud Collaboration Network</title><author>Zhao, Ping ; Yang, Ziyi ; Mu, Yaqiong ; Zhang, Guanglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-7cb579e53dbeddd086517e9a5c4dab7ed3ee0b96b42fbf684175657c7658093d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Collaboration</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Cooperation</topic><topic>Deep learning</topic><topic>Deep reinforcement learning (DRL)</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Markov processes</topic><topic>Mobile computing</topic><topic>mobile-edge computing (MEC)</topic><topic>Optimization</topic><topic>Selfishness</topic><topic>selfishness evaluation mechanism</topic><topic>Servers</topic><topic>Task analysis</topic><topic>task offloading</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ping</creatorcontrib><creatorcontrib>Yang, Ziyi</creatorcontrib><creatorcontrib>Mu, Yaqiong</creatorcontrib><creatorcontrib>Zhang, Guanglin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Ping</au><au>Yang, Ziyi</au><au>Mu, Yaqiong</au><au>Zhang, Guanglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selfish-Aware and Learning-Aided Computation Offloading for Edge-Cloud Collaboration Network</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>10</volume><issue>11</issue><spage>9953</spage><epage>9965</epage><pages>9953-9965</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Mobile-edge computing (MEC) raises the problem of selfish user devices that utilize less computing resources than expected to execute offloading tasks or maliciously discard computation tasks. However, most of the existing work either focused on the task offloading or concentrated on the trust mechanism in MEC systems. By jointly considering the two challenges, in this article, we propose a selfish-aware and learning-aided computation offloading scheme for edge-cloud collaboration network. Specifically, we first design a selfishness evaluation mechanism to evaluate the selfishness of the user devices based on the historical interaction records of the edge-cloud collaboration network. Then, we construct the task offloading model which introduces the selfishness evaluation mechanism to suppress the selfish user devices. On this basis, we further formalize the selfish-aware task offloading as an optimization problem of the weighted sum of time latency and energy consumption. Thereafter, we take one step further formalizing the optimization problem as a Markov decision process (MDP) and design a task offloading algorithm based on deep reinforcement learning (DRL) to find the optimized task offloading decision. The simulation results demonstrate that our work can decrease the time latency and energy consumption as well as suppress the selfish user devices.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3235351</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7461-377X</orcidid><orcidid>https://orcid.org/0000-0003-4095-6843</orcidid><orcidid>https://orcid.org/0000-0003-0907-9926</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2023-06, Vol.10 (11), p.9953-9965
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10012417
source IEEE Electronic Library (IEL)
subjects Algorithms
Cloud computing
Collaboration
Computation offloading
Computational modeling
Cooperation
Deep learning
Deep reinforcement learning (DRL)
Edge computing
Energy consumption
Markov processes
Mobile computing
mobile-edge computing (MEC)
Optimization
Selfishness
selfishness evaluation mechanism
Servers
Task analysis
task offloading
title Selfish-Aware and Learning-Aided Computation Offloading for Edge-Cloud Collaboration Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selfish-Aware%20and%20Learning-Aided%20Computation%20Offloading%20for%20Edge-Cloud%20Collaboration%20Network&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zhao,%20Ping&rft.date=2023-06-01&rft.volume=10&rft.issue=11&rft.spage=9953&rft.epage=9965&rft.pages=9953-9965&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3235351&rft_dat=%3Cproquest_RIE%3E2814571929%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814571929&rft_id=info:pmid/&rft_ieee_id=10012417&rfr_iscdi=true