A Domain Adaptation Method for Land Use Classification Based on Improved HR-Net
In recent years, the recognition accuracy of semantic segmentation model on natural images can yield a very high level. Thus, it is of great significance to utilize semantic segmentation algorithm to obtain land use classification with remote sensing images. However, due to the large differences bet...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Zheng, Zezhong Yu, Shuang Zhu, Mingcang Jiang, Shaobin He, Yong Peng, Qingjun Liu, Qiang Jiang, Ling Li, Pengshan |
description | In recent years, the recognition accuracy of semantic segmentation model on natural images can yield a very high level. Thus, it is of great significance to utilize semantic segmentation algorithm to obtain land use classification with remote sensing images. However, due to the large differences between natural images and remote sensing images, the standard semantic segmentation algorithm is not effective for land use classification of remote sensing images. In this paper, the structure of high-resolution network (HR-Net) algorithm is improved according to the difference between the two kinds of images to make it more suitable for remote sensing images. Furthermore, in order to overcome the dependence of the semantic segmentation algorithm on a large number of high-quality prior data sets, some research experiments are conducted with the improved HR-Net domain adaptation model, and both of the adversarial domain adaptation model and the fusion domain adaptation model based on improved HR-Net and CycleGAN are designed to reduce the workload of manually labeling data. The extensive experimental results show that the classification of our improved HR-Net algorithm and the two domain adaptation models outperform other algorithms, that demonstrates the effectiveness and superiority of our algorithms. |
doi_str_mv | 10.1109/TGRS.2023.3235050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10011439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10011439</ieee_id><sourcerecordid>2775105002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-caee4692e95277b18eecc677140b10a7276e955d28b00cbf735da5a445d73c33</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqzH5km2Ot2haqhVrPy2YzwRSb1Gwq-O_dkh48zQvzfsDD2C3CCBGyh81s_T4SIORICqlBwxkboNbjBFKlztkAMEsTMc7EJbsKYQuASqMZsNWEPzU7V9V8Urh957qqqfkrdZ9Nwcum5UtXF_wjEJ9-uRCqsvK95dEFKngUi92-bX6inq-TN-qu2UXpvgLdnO6QbV6eN9N5slzNFtPJMvEiU13iHZFKM0GZFsbkOCbyPjUGFeQIzgiTxpcuxDgH8HlppC6cdkrpwkgv5ZDd97Vx_PtAobPb5tDWcdHGPo0RQGQxZNi7fNuE0FJp9221c-2vRbBHbPaIzR6x2RO2mLnrMxUR_fMDopKZ_AMGL2c7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775105002</pqid></control><display><type>article</type><title>A Domain Adaptation Method for Land Use Classification Based on Improved HR-Net</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Zezhong ; Yu, Shuang ; Zhu, Mingcang ; Jiang, Shaobin ; He, Yong ; Peng, Qingjun ; Liu, Qiang ; Jiang, Ling ; Li, Pengshan</creator><creatorcontrib>Zheng, Zezhong ; Yu, Shuang ; Zhu, Mingcang ; Jiang, Shaobin ; He, Yong ; Peng, Qingjun ; Liu, Qiang ; Jiang, Ling ; Li, Pengshan</creatorcontrib><description>In recent years, the recognition accuracy of semantic segmentation model on natural images can yield a very high level. Thus, it is of great significance to utilize semantic segmentation algorithm to obtain land use classification with remote sensing images. However, due to the large differences between natural images and remote sensing images, the standard semantic segmentation algorithm is not effective for land use classification of remote sensing images. In this paper, the structure of high-resolution network (HR-Net) algorithm is improved according to the difference between the two kinds of images to make it more suitable for remote sensing images. Furthermore, in order to overcome the dependence of the semantic segmentation algorithm on a large number of high-quality prior data sets, some research experiments are conducted with the improved HR-Net domain adaptation model, and both of the adversarial domain adaptation model and the fusion domain adaptation model based on improved HR-Net and CycleGAN are designed to reduce the workload of manually labeling data. The extensive experimental results show that the classification of our improved HR-Net algorithm and the two domain adaptation models outperform other algorithms, that demonstrates the effectiveness and superiority of our algorithms.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3235050</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Adaptation models ; Algorithms ; Classification ; Classification algorithms ; Domain adaptation ; Domains ; generative adversarial network ; Image processing ; Image segmentation ; improved HR-Net ; Land use ; Land use classification ; Mathematical models ; Object recognition ; Remote sensing ; Semantic segmentation ; Semantics ; Spatial resolution ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-caee4692e95277b18eecc677140b10a7276e955d28b00cbf735da5a445d73c33</citedby><cites>FETCH-LOGICAL-c294t-caee4692e95277b18eecc677140b10a7276e955d28b00cbf735da5a445d73c33</cites><orcidid>0000-0002-5615-5015 ; 0000-0002-5533-9824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10011439$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10011439$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Zezhong</creatorcontrib><creatorcontrib>Yu, Shuang</creatorcontrib><creatorcontrib>Zhu, Mingcang</creatorcontrib><creatorcontrib>Jiang, Shaobin</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Peng, Qingjun</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Jiang, Ling</creatorcontrib><creatorcontrib>Li, Pengshan</creatorcontrib><title>A Domain Adaptation Method for Land Use Classification Based on Improved HR-Net</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In recent years, the recognition accuracy of semantic segmentation model on natural images can yield a very high level. Thus, it is of great significance to utilize semantic segmentation algorithm to obtain land use classification with remote sensing images. However, due to the large differences between natural images and remote sensing images, the standard semantic segmentation algorithm is not effective for land use classification of remote sensing images. In this paper, the structure of high-resolution network (HR-Net) algorithm is improved according to the difference between the two kinds of images to make it more suitable for remote sensing images. Furthermore, in order to overcome the dependence of the semantic segmentation algorithm on a large number of high-quality prior data sets, some research experiments are conducted with the improved HR-Net domain adaptation model, and both of the adversarial domain adaptation model and the fusion domain adaptation model based on improved HR-Net and CycleGAN are designed to reduce the workload of manually labeling data. The extensive experimental results show that the classification of our improved HR-Net algorithm and the two domain adaptation models outperform other algorithms, that demonstrates the effectiveness and superiority of our algorithms.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Domain adaptation</subject><subject>Domains</subject><subject>generative adversarial network</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>improved HR-Net</subject><subject>Land use</subject><subject>Land use classification</subject><subject>Mathematical models</subject><subject>Object recognition</subject><subject>Remote sensing</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Spatial resolution</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqzH5km2Ot2haqhVrPy2YzwRSb1Gwq-O_dkh48zQvzfsDD2C3CCBGyh81s_T4SIORICqlBwxkboNbjBFKlztkAMEsTMc7EJbsKYQuASqMZsNWEPzU7V9V8Urh957qqqfkrdZ9Nwcum5UtXF_wjEJ9-uRCqsvK95dEFKngUi92-bX6inq-TN-qu2UXpvgLdnO6QbV6eN9N5slzNFtPJMvEiU13iHZFKM0GZFsbkOCbyPjUGFeQIzgiTxpcuxDgH8HlppC6cdkrpwkgv5ZDd97Vx_PtAobPb5tDWcdHGPo0RQGQxZNi7fNuE0FJp9221c-2vRbBHbPaIzR6x2RO2mLnrMxUR_fMDopKZ_AMGL2c7</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zheng, Zezhong</creator><creator>Yu, Shuang</creator><creator>Zhu, Mingcang</creator><creator>Jiang, Shaobin</creator><creator>He, Yong</creator><creator>Peng, Qingjun</creator><creator>Liu, Qiang</creator><creator>Jiang, Ling</creator><creator>Li, Pengshan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5615-5015</orcidid><orcidid>https://orcid.org/0000-0002-5533-9824</orcidid></search><sort><creationdate>20230101</creationdate><title>A Domain Adaptation Method for Land Use Classification Based on Improved HR-Net</title><author>Zheng, Zezhong ; Yu, Shuang ; Zhu, Mingcang ; Jiang, Shaobin ; He, Yong ; Peng, Qingjun ; Liu, Qiang ; Jiang, Ling ; Li, Pengshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-caee4692e95277b18eecc677140b10a7276e955d28b00cbf735da5a445d73c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Domain adaptation</topic><topic>Domains</topic><topic>generative adversarial network</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>improved HR-Net</topic><topic>Land use</topic><topic>Land use classification</topic><topic>Mathematical models</topic><topic>Object recognition</topic><topic>Remote sensing</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Spatial resolution</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Zezhong</creatorcontrib><creatorcontrib>Yu, Shuang</creatorcontrib><creatorcontrib>Zhu, Mingcang</creatorcontrib><creatorcontrib>Jiang, Shaobin</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Peng, Qingjun</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Jiang, Ling</creatorcontrib><creatorcontrib>Li, Pengshan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Zezhong</au><au>Yu, Shuang</au><au>Zhu, Mingcang</au><au>Jiang, Shaobin</au><au>He, Yong</au><au>Peng, Qingjun</au><au>Liu, Qiang</au><au>Jiang, Ling</au><au>Li, Pengshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Domain Adaptation Method for Land Use Classification Based on Improved HR-Net</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In recent years, the recognition accuracy of semantic segmentation model on natural images can yield a very high level. Thus, it is of great significance to utilize semantic segmentation algorithm to obtain land use classification with remote sensing images. However, due to the large differences between natural images and remote sensing images, the standard semantic segmentation algorithm is not effective for land use classification of remote sensing images. In this paper, the structure of high-resolution network (HR-Net) algorithm is improved according to the difference between the two kinds of images to make it more suitable for remote sensing images. Furthermore, in order to overcome the dependence of the semantic segmentation algorithm on a large number of high-quality prior data sets, some research experiments are conducted with the improved HR-Net domain adaptation model, and both of the adversarial domain adaptation model and the fusion domain adaptation model based on improved HR-Net and CycleGAN are designed to reduce the workload of manually labeling data. The extensive experimental results show that the classification of our improved HR-Net algorithm and the two domain adaptation models outperform other algorithms, that demonstrates the effectiveness and superiority of our algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3235050</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5615-5015</orcidid><orcidid>https://orcid.org/0000-0002-5533-9824</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10011439 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation Adaptation models Algorithms Classification Classification algorithms Domain adaptation Domains generative adversarial network Image processing Image segmentation improved HR-Net Land use Land use classification Mathematical models Object recognition Remote sensing Semantic segmentation Semantics Spatial resolution Training |
title | A Domain Adaptation Method for Land Use Classification Based on Improved HR-Net |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Domain%20Adaptation%20Method%20for%20Land%20Use%20Classification%20Based%20on%20Improved%20HR-Net&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zheng,%20Zezhong&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3235050&rft_dat=%3Cproquest_RIE%3E2775105002%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775105002&rft_id=info:pmid/&rft_ieee_id=10011439&rfr_iscdi=true |