A Domain Adaptation Method for Land Use Classification Based on Improved HR-Net

In recent years, the recognition accuracy of semantic segmentation model on natural images can yield a very high level. Thus, it is of great significance to utilize semantic segmentation algorithm to obtain land use classification with remote sensing images. However, due to the large differences bet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1
Hauptverfasser: Zheng, Zezhong, Yu, Shuang, Zhu, Mingcang, Jiang, Shaobin, He, Yong, Peng, Qingjun, Liu, Qiang, Jiang, Ling, Li, Pengshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Zheng, Zezhong
Yu, Shuang
Zhu, Mingcang
Jiang, Shaobin
He, Yong
Peng, Qingjun
Liu, Qiang
Jiang, Ling
Li, Pengshan
description In recent years, the recognition accuracy of semantic segmentation model on natural images can yield a very high level. Thus, it is of great significance to utilize semantic segmentation algorithm to obtain land use classification with remote sensing images. However, due to the large differences between natural images and remote sensing images, the standard semantic segmentation algorithm is not effective for land use classification of remote sensing images. In this paper, the structure of high-resolution network (HR-Net) algorithm is improved according to the difference between the two kinds of images to make it more suitable for remote sensing images. Furthermore, in order to overcome the dependence of the semantic segmentation algorithm on a large number of high-quality prior data sets, some research experiments are conducted with the improved HR-Net domain adaptation model, and both of the adversarial domain adaptation model and the fusion domain adaptation model based on improved HR-Net and CycleGAN are designed to reduce the workload of manually labeling data. The extensive experimental results show that the classification of our improved HR-Net algorithm and the two domain adaptation models outperform other algorithms, that demonstrates the effectiveness and superiority of our algorithms.
doi_str_mv 10.1109/TGRS.2023.3235050
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10011439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10011439</ieee_id><sourcerecordid>2775105002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-caee4692e95277b18eecc677140b10a7276e955d28b00cbf735da5a445d73c33</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqzH5km2Ot2haqhVrPy2YzwRSb1Gwq-O_dkh48zQvzfsDD2C3CCBGyh81s_T4SIORICqlBwxkboNbjBFKlztkAMEsTMc7EJbsKYQuASqMZsNWEPzU7V9V8Urh957qqqfkrdZ9Nwcum5UtXF_wjEJ9-uRCqsvK95dEFKngUi92-bX6inq-TN-qu2UXpvgLdnO6QbV6eN9N5slzNFtPJMvEiU13iHZFKM0GZFsbkOCbyPjUGFeQIzgiTxpcuxDgH8HlppC6cdkrpwkgv5ZDd97Vx_PtAobPb5tDWcdHGPo0RQGQxZNi7fNuE0FJp9221c-2vRbBHbPaIzR6x2RO2mLnrMxUR_fMDopKZ_AMGL2c7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775105002</pqid></control><display><type>article</type><title>A Domain Adaptation Method for Land Use Classification Based on Improved HR-Net</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Zezhong ; Yu, Shuang ; Zhu, Mingcang ; Jiang, Shaobin ; He, Yong ; Peng, Qingjun ; Liu, Qiang ; Jiang, Ling ; Li, Pengshan</creator><creatorcontrib>Zheng, Zezhong ; Yu, Shuang ; Zhu, Mingcang ; Jiang, Shaobin ; He, Yong ; Peng, Qingjun ; Liu, Qiang ; Jiang, Ling ; Li, Pengshan</creatorcontrib><description>In recent years, the recognition accuracy of semantic segmentation model on natural images can yield a very high level. Thus, it is of great significance to utilize semantic segmentation algorithm to obtain land use classification with remote sensing images. However, due to the large differences between natural images and remote sensing images, the standard semantic segmentation algorithm is not effective for land use classification of remote sensing images. In this paper, the structure of high-resolution network (HR-Net) algorithm is improved according to the difference between the two kinds of images to make it more suitable for remote sensing images. Furthermore, in order to overcome the dependence of the semantic segmentation algorithm on a large number of high-quality prior data sets, some research experiments are conducted with the improved HR-Net domain adaptation model, and both of the adversarial domain adaptation model and the fusion domain adaptation model based on improved HR-Net and CycleGAN are designed to reduce the workload of manually labeling data. The extensive experimental results show that the classification of our improved HR-Net algorithm and the two domain adaptation models outperform other algorithms, that demonstrates the effectiveness and superiority of our algorithms.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3235050</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Adaptation models ; Algorithms ; Classification ; Classification algorithms ; Domain adaptation ; Domains ; generative adversarial network ; Image processing ; Image segmentation ; improved HR-Net ; Land use ; Land use classification ; Mathematical models ; Object recognition ; Remote sensing ; Semantic segmentation ; Semantics ; Spatial resolution ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-caee4692e95277b18eecc677140b10a7276e955d28b00cbf735da5a445d73c33</citedby><cites>FETCH-LOGICAL-c294t-caee4692e95277b18eecc677140b10a7276e955d28b00cbf735da5a445d73c33</cites><orcidid>0000-0002-5615-5015 ; 0000-0002-5533-9824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10011439$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10011439$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Zezhong</creatorcontrib><creatorcontrib>Yu, Shuang</creatorcontrib><creatorcontrib>Zhu, Mingcang</creatorcontrib><creatorcontrib>Jiang, Shaobin</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Peng, Qingjun</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Jiang, Ling</creatorcontrib><creatorcontrib>Li, Pengshan</creatorcontrib><title>A Domain Adaptation Method for Land Use Classification Based on Improved HR-Net</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In recent years, the recognition accuracy of semantic segmentation model on natural images can yield a very high level. Thus, it is of great significance to utilize semantic segmentation algorithm to obtain land use classification with remote sensing images. However, due to the large differences between natural images and remote sensing images, the standard semantic segmentation algorithm is not effective for land use classification of remote sensing images. In this paper, the structure of high-resolution network (HR-Net) algorithm is improved according to the difference between the two kinds of images to make it more suitable for remote sensing images. Furthermore, in order to overcome the dependence of the semantic segmentation algorithm on a large number of high-quality prior data sets, some research experiments are conducted with the improved HR-Net domain adaptation model, and both of the adversarial domain adaptation model and the fusion domain adaptation model based on improved HR-Net and CycleGAN are designed to reduce the workload of manually labeling data. The extensive experimental results show that the classification of our improved HR-Net algorithm and the two domain adaptation models outperform other algorithms, that demonstrates the effectiveness and superiority of our algorithms.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Domain adaptation</subject><subject>Domains</subject><subject>generative adversarial network</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>improved HR-Net</subject><subject>Land use</subject><subject>Land use classification</subject><subject>Mathematical models</subject><subject>Object recognition</subject><subject>Remote sensing</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Spatial resolution</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqzH5km2Ot2haqhVrPy2YzwRSb1Gwq-O_dkh48zQvzfsDD2C3CCBGyh81s_T4SIORICqlBwxkboNbjBFKlztkAMEsTMc7EJbsKYQuASqMZsNWEPzU7V9V8Urh957qqqfkrdZ9Nwcum5UtXF_wjEJ9-uRCqsvK95dEFKngUi92-bX6inq-TN-qu2UXpvgLdnO6QbV6eN9N5slzNFtPJMvEiU13iHZFKM0GZFsbkOCbyPjUGFeQIzgiTxpcuxDgH8HlppC6cdkrpwkgv5ZDd97Vx_PtAobPb5tDWcdHGPo0RQGQxZNi7fNuE0FJp9221c-2vRbBHbPaIzR6x2RO2mLnrMxUR_fMDopKZ_AMGL2c7</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zheng, Zezhong</creator><creator>Yu, Shuang</creator><creator>Zhu, Mingcang</creator><creator>Jiang, Shaobin</creator><creator>He, Yong</creator><creator>Peng, Qingjun</creator><creator>Liu, Qiang</creator><creator>Jiang, Ling</creator><creator>Li, Pengshan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5615-5015</orcidid><orcidid>https://orcid.org/0000-0002-5533-9824</orcidid></search><sort><creationdate>20230101</creationdate><title>A Domain Adaptation Method for Land Use Classification Based on Improved HR-Net</title><author>Zheng, Zezhong ; Yu, Shuang ; Zhu, Mingcang ; Jiang, Shaobin ; He, Yong ; Peng, Qingjun ; Liu, Qiang ; Jiang, Ling ; Li, Pengshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-caee4692e95277b18eecc677140b10a7276e955d28b00cbf735da5a445d73c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Domain adaptation</topic><topic>Domains</topic><topic>generative adversarial network</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>improved HR-Net</topic><topic>Land use</topic><topic>Land use classification</topic><topic>Mathematical models</topic><topic>Object recognition</topic><topic>Remote sensing</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Spatial resolution</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Zezhong</creatorcontrib><creatorcontrib>Yu, Shuang</creatorcontrib><creatorcontrib>Zhu, Mingcang</creatorcontrib><creatorcontrib>Jiang, Shaobin</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Peng, Qingjun</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Jiang, Ling</creatorcontrib><creatorcontrib>Li, Pengshan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Zezhong</au><au>Yu, Shuang</au><au>Zhu, Mingcang</au><au>Jiang, Shaobin</au><au>He, Yong</au><au>Peng, Qingjun</au><au>Liu, Qiang</au><au>Jiang, Ling</au><au>Li, Pengshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Domain Adaptation Method for Land Use Classification Based on Improved HR-Net</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In recent years, the recognition accuracy of semantic segmentation model on natural images can yield a very high level. Thus, it is of great significance to utilize semantic segmentation algorithm to obtain land use classification with remote sensing images. However, due to the large differences between natural images and remote sensing images, the standard semantic segmentation algorithm is not effective for land use classification of remote sensing images. In this paper, the structure of high-resolution network (HR-Net) algorithm is improved according to the difference between the two kinds of images to make it more suitable for remote sensing images. Furthermore, in order to overcome the dependence of the semantic segmentation algorithm on a large number of high-quality prior data sets, some research experiments are conducted with the improved HR-Net domain adaptation model, and both of the adversarial domain adaptation model and the fusion domain adaptation model based on improved HR-Net and CycleGAN are designed to reduce the workload of manually labeling data. The extensive experimental results show that the classification of our improved HR-Net algorithm and the two domain adaptation models outperform other algorithms, that demonstrates the effectiveness and superiority of our algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3235050</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5615-5015</orcidid><orcidid>https://orcid.org/0000-0002-5533-9824</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10011439
source IEEE Electronic Library (IEL)
subjects Adaptation
Adaptation models
Algorithms
Classification
Classification algorithms
Domain adaptation
Domains
generative adversarial network
Image processing
Image segmentation
improved HR-Net
Land use
Land use classification
Mathematical models
Object recognition
Remote sensing
Semantic segmentation
Semantics
Spatial resolution
Training
title A Domain Adaptation Method for Land Use Classification Based on Improved HR-Net
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Domain%20Adaptation%20Method%20for%20Land%20Use%20Classification%20Based%20on%20Improved%20HR-Net&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zheng,%20Zezhong&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3235050&rft_dat=%3Cproquest_RIE%3E2775105002%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775105002&rft_id=info:pmid/&rft_ieee_id=10011439&rfr_iscdi=true