Reducing Computational Complexity of Neural Networks in Optical Channel Equalization: From Concepts to Implementation

This paper introduces a novel methodology for developing low-complexity neural network (NN) based equalizers to address impairments in high-speed coherent optical transmission systems. We present a comprehensive exploration and comparison of deep model compression techniques applied to feed-forward...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2023-07, Vol.41 (14), p.4557-4581
Hauptverfasser: Freire, Pedro J., Napoli, Antonio, Spinnler, Bernhard, Anderson, Michael, Ron, Diego Arguello, Schairer, Wolfgang, Bex, Thomas, Costa, Nelson, Turitsyn, Sergei K., Prilepsky, Jaroslaw E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4581
container_issue 14
container_start_page 4557
container_title Journal of lightwave technology
container_volume 41
creator Freire, Pedro J.
Napoli, Antonio
Spinnler, Bernhard
Anderson, Michael
Ron, Diego Arguello
Schairer, Wolfgang
Bex, Thomas
Costa, Nelson
Turitsyn, Sergei K.
Prilepsky, Jaroslaw E.
description This paper introduces a novel methodology for developing low-complexity neural network (NN) based equalizers to address impairments in high-speed coherent optical transmission systems. We present a comprehensive exploration and comparison of deep model compression techniques applied to feed-forward and recurrent NN designs, assessing their impact on equalizer performance. Our investigation encompasses quantization, weight clustering, pruning, and other cutting-edge compression strategies. We propose and evaluate a Bayesian optimization-assisted compression approach that optimizes hyperparameters to simultaneously enhance performance and reduce complexity. Additionally, we introduce four distinct metrics (RMpS, BoP, NABS, and NLGs) to quantify computing complexity in various compression algorithms. These metrics serve as benchmarks for evaluating the relative effectiveness of NN equalizers when compression approaches are employed. The analysis is completed by evaluating the trade-off between compression complexity and performance using simulated and experimental data. By employing optimal compression techniques, we demonstrate the feasibility of designing a simplified NN-based equalizer surpassing the performance of conventional digital back-propagation (DBP) equalizers with only one step per span. This is achieved by reducing the number of multipliers through weighted clustering and pruning algorithms. Furthermore, we highlight that an NN-based equalizer can achieve better performance than the full electronic chromatic dispersion compensation block while maintaining a similar level of complexity. In conclusion, we outline remaining challenges, unanswered questions, and potential avenues for future research in this field.
doi_str_mv 10.1109/JLT.2023.3234327
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10006884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10006884</ieee_id><sourcerecordid>2839516174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4f73efa906dc375890cc930b18a3856ccc6ffb349e938396248c8671d14df7453</originalsourceid><addsrcrecordid>eNpNkMFLwzAUh4MoOKd3Dx4CnjuTvLRJvcnYdDI2kHkuXZpqZ9t0SYrOv9523cFTeOH7fo_3Q-iWkgmlJH54XW4mjDCYAAMOTJyhEQ1DGTBG4RyNiAAIpGD8El05tyOEci7FCLVvOmtVUX_gqama1qe-MHVaHqdS_xT-gE2OV7q13edK-29jvxwuarxufKF68DOta13i2b5Ny-L36D_iuTVVl1Er3XiHvcGLPq7S9bDgGl3kaen0zekdo_f5bDN9CZbr58X0aRkoAO4DngvQeRqTKFMgQhkTpWIgWypTkGGklIryfAs81jFIiCPGpZKRoBnlWS54CGN0P-Q21uxb7XyyM63t7nMJ64SQRlTwjiIDpaxxzuo8aWxRpfaQUJL05SZduUlfbnIqt1PuBqXQWv_DCYmk5PAHNAB23Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839516174</pqid></control><display><type>article</type><title>Reducing Computational Complexity of Neural Networks in Optical Channel Equalization: From Concepts to Implementation</title><source>IEEE Electronic Library (IEL)</source><creator>Freire, Pedro J. ; Napoli, Antonio ; Spinnler, Bernhard ; Anderson, Michael ; Ron, Diego Arguello ; Schairer, Wolfgang ; Bex, Thomas ; Costa, Nelson ; Turitsyn, Sergei K. ; Prilepsky, Jaroslaw E.</creator><creatorcontrib>Freire, Pedro J. ; Napoli, Antonio ; Spinnler, Bernhard ; Anderson, Michael ; Ron, Diego Arguello ; Schairer, Wolfgang ; Bex, Thomas ; Costa, Nelson ; Turitsyn, Sergei K. ; Prilepsky, Jaroslaw E.</creatorcontrib><description>This paper introduces a novel methodology for developing low-complexity neural network (NN) based equalizers to address impairments in high-speed coherent optical transmission systems. We present a comprehensive exploration and comparison of deep model compression techniques applied to feed-forward and recurrent NN designs, assessing their impact on equalizer performance. Our investigation encompasses quantization, weight clustering, pruning, and other cutting-edge compression strategies. We propose and evaluate a Bayesian optimization-assisted compression approach that optimizes hyperparameters to simultaneously enhance performance and reduce complexity. Additionally, we introduce four distinct metrics (RMpS, BoP, NABS, and NLGs) to quantify computing complexity in various compression algorithms. These metrics serve as benchmarks for evaluating the relative effectiveness of NN equalizers when compression approaches are employed. The analysis is completed by evaluating the trade-off between compression complexity and performance using simulated and experimental data. By employing optimal compression techniques, we demonstrate the feasibility of designing a simplified NN-based equalizer surpassing the performance of conventional digital back-propagation (DBP) equalizers with only one step per span. This is achieved by reducing the number of multipliers through weighted clustering and pruning algorithms. Furthermore, we highlight that an NN-based equalizer can achieve better performance than the full electronic chromatic dispersion compensation block while maintaining a similar level of complexity. In conclusion, we outline remaining challenges, unanswered questions, and potential avenues for future research in this field.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2023.3234327</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Back propagation networks ; Bayesian optimizer ; Clustering ; coherent detection ; Complexity ; computational complexity ; Computational modeling ; Equalizers ; Fiber nonlinear optics ; neural network ; Neural networks ; nonlinear equalizer ; Nonlinear optics ; Optical communication ; Optical fibers ; Optimization ; pruning ; quantization ; Symbols</subject><ispartof>Journal of lightwave technology, 2023-07, Vol.41 (14), p.4557-4581</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4f73efa906dc375890cc930b18a3856ccc6ffb349e938396248c8671d14df7453</citedby><cites>FETCH-LOGICAL-c334t-4f73efa906dc375890cc930b18a3856ccc6ffb349e938396248c8671d14df7453</cites><orcidid>0000-0001-7417-9398 ; 0000-0002-8678-5691 ; 0000-0002-9264-9274 ; 0000-0002-6004-385X ; 0000-0003-0101-3834 ; 0000-0002-3035-4112 ; 0000-0003-3145-1018 ; 0000-0001-9578-0297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10006884$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Freire, Pedro J.</creatorcontrib><creatorcontrib>Napoli, Antonio</creatorcontrib><creatorcontrib>Spinnler, Bernhard</creatorcontrib><creatorcontrib>Anderson, Michael</creatorcontrib><creatorcontrib>Ron, Diego Arguello</creatorcontrib><creatorcontrib>Schairer, Wolfgang</creatorcontrib><creatorcontrib>Bex, Thomas</creatorcontrib><creatorcontrib>Costa, Nelson</creatorcontrib><creatorcontrib>Turitsyn, Sergei K.</creatorcontrib><creatorcontrib>Prilepsky, Jaroslaw E.</creatorcontrib><title>Reducing Computational Complexity of Neural Networks in Optical Channel Equalization: From Concepts to Implementation</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>This paper introduces a novel methodology for developing low-complexity neural network (NN) based equalizers to address impairments in high-speed coherent optical transmission systems. We present a comprehensive exploration and comparison of deep model compression techniques applied to feed-forward and recurrent NN designs, assessing their impact on equalizer performance. Our investigation encompasses quantization, weight clustering, pruning, and other cutting-edge compression strategies. We propose and evaluate a Bayesian optimization-assisted compression approach that optimizes hyperparameters to simultaneously enhance performance and reduce complexity. Additionally, we introduce four distinct metrics (RMpS, BoP, NABS, and NLGs) to quantify computing complexity in various compression algorithms. These metrics serve as benchmarks for evaluating the relative effectiveness of NN equalizers when compression approaches are employed. The analysis is completed by evaluating the trade-off between compression complexity and performance using simulated and experimental data. By employing optimal compression techniques, we demonstrate the feasibility of designing a simplified NN-based equalizer surpassing the performance of conventional digital back-propagation (DBP) equalizers with only one step per span. This is achieved by reducing the number of multipliers through weighted clustering and pruning algorithms. Furthermore, we highlight that an NN-based equalizer can achieve better performance than the full electronic chromatic dispersion compensation block while maintaining a similar level of complexity. In conclusion, we outline remaining challenges, unanswered questions, and potential avenues for future research in this field.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>Bayesian optimizer</subject><subject>Clustering</subject><subject>coherent detection</subject><subject>Complexity</subject><subject>computational complexity</subject><subject>Computational modeling</subject><subject>Equalizers</subject><subject>Fiber nonlinear optics</subject><subject>neural network</subject><subject>Neural networks</subject><subject>nonlinear equalizer</subject><subject>Nonlinear optics</subject><subject>Optical communication</subject><subject>Optical fibers</subject><subject>Optimization</subject><subject>pruning</subject><subject>quantization</subject><subject>Symbols</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMFLwzAUh4MoOKd3Dx4CnjuTvLRJvcnYdDI2kHkuXZpqZ9t0SYrOv9523cFTeOH7fo_3Q-iWkgmlJH54XW4mjDCYAAMOTJyhEQ1DGTBG4RyNiAAIpGD8El05tyOEci7FCLVvOmtVUX_gqama1qe-MHVaHqdS_xT-gE2OV7q13edK-29jvxwuarxufKF68DOta13i2b5Ny-L36D_iuTVVl1Er3XiHvcGLPq7S9bDgGl3kaen0zekdo_f5bDN9CZbr58X0aRkoAO4DngvQeRqTKFMgQhkTpWIgWypTkGGklIryfAs81jFIiCPGpZKRoBnlWS54CGN0P-Q21uxb7XyyM63t7nMJ64SQRlTwjiIDpaxxzuo8aWxRpfaQUJL05SZduUlfbnIqt1PuBqXQWv_DCYmk5PAHNAB23Q</recordid><startdate>20230715</startdate><enddate>20230715</enddate><creator>Freire, Pedro J.</creator><creator>Napoli, Antonio</creator><creator>Spinnler, Bernhard</creator><creator>Anderson, Michael</creator><creator>Ron, Diego Arguello</creator><creator>Schairer, Wolfgang</creator><creator>Bex, Thomas</creator><creator>Costa, Nelson</creator><creator>Turitsyn, Sergei K.</creator><creator>Prilepsky, Jaroslaw E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7417-9398</orcidid><orcidid>https://orcid.org/0000-0002-8678-5691</orcidid><orcidid>https://orcid.org/0000-0002-9264-9274</orcidid><orcidid>https://orcid.org/0000-0002-6004-385X</orcidid><orcidid>https://orcid.org/0000-0003-0101-3834</orcidid><orcidid>https://orcid.org/0000-0002-3035-4112</orcidid><orcidid>https://orcid.org/0000-0003-3145-1018</orcidid><orcidid>https://orcid.org/0000-0001-9578-0297</orcidid></search><sort><creationdate>20230715</creationdate><title>Reducing Computational Complexity of Neural Networks in Optical Channel Equalization: From Concepts to Implementation</title><author>Freire, Pedro J. ; Napoli, Antonio ; Spinnler, Bernhard ; Anderson, Michael ; Ron, Diego Arguello ; Schairer, Wolfgang ; Bex, Thomas ; Costa, Nelson ; Turitsyn, Sergei K. ; Prilepsky, Jaroslaw E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4f73efa906dc375890cc930b18a3856ccc6ffb349e938396248c8671d14df7453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>Bayesian optimizer</topic><topic>Clustering</topic><topic>coherent detection</topic><topic>Complexity</topic><topic>computational complexity</topic><topic>Computational modeling</topic><topic>Equalizers</topic><topic>Fiber nonlinear optics</topic><topic>neural network</topic><topic>Neural networks</topic><topic>nonlinear equalizer</topic><topic>Nonlinear optics</topic><topic>Optical communication</topic><topic>Optical fibers</topic><topic>Optimization</topic><topic>pruning</topic><topic>quantization</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freire, Pedro J.</creatorcontrib><creatorcontrib>Napoli, Antonio</creatorcontrib><creatorcontrib>Spinnler, Bernhard</creatorcontrib><creatorcontrib>Anderson, Michael</creatorcontrib><creatorcontrib>Ron, Diego Arguello</creatorcontrib><creatorcontrib>Schairer, Wolfgang</creatorcontrib><creatorcontrib>Bex, Thomas</creatorcontrib><creatorcontrib>Costa, Nelson</creatorcontrib><creatorcontrib>Turitsyn, Sergei K.</creatorcontrib><creatorcontrib>Prilepsky, Jaroslaw E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freire, Pedro J.</au><au>Napoli, Antonio</au><au>Spinnler, Bernhard</au><au>Anderson, Michael</au><au>Ron, Diego Arguello</au><au>Schairer, Wolfgang</au><au>Bex, Thomas</au><au>Costa, Nelson</au><au>Turitsyn, Sergei K.</au><au>Prilepsky, Jaroslaw E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing Computational Complexity of Neural Networks in Optical Channel Equalization: From Concepts to Implementation</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2023-07-15</date><risdate>2023</risdate><volume>41</volume><issue>14</issue><spage>4557</spage><epage>4581</epage><pages>4557-4581</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>This paper introduces a novel methodology for developing low-complexity neural network (NN) based equalizers to address impairments in high-speed coherent optical transmission systems. We present a comprehensive exploration and comparison of deep model compression techniques applied to feed-forward and recurrent NN designs, assessing their impact on equalizer performance. Our investigation encompasses quantization, weight clustering, pruning, and other cutting-edge compression strategies. We propose and evaluate a Bayesian optimization-assisted compression approach that optimizes hyperparameters to simultaneously enhance performance and reduce complexity. Additionally, we introduce four distinct metrics (RMpS, BoP, NABS, and NLGs) to quantify computing complexity in various compression algorithms. These metrics serve as benchmarks for evaluating the relative effectiveness of NN equalizers when compression approaches are employed. The analysis is completed by evaluating the trade-off between compression complexity and performance using simulated and experimental data. By employing optimal compression techniques, we demonstrate the feasibility of designing a simplified NN-based equalizer surpassing the performance of conventional digital back-propagation (DBP) equalizers with only one step per span. This is achieved by reducing the number of multipliers through weighted clustering and pruning algorithms. Furthermore, we highlight that an NN-based equalizer can achieve better performance than the full electronic chromatic dispersion compensation block while maintaining a similar level of complexity. In conclusion, we outline remaining challenges, unanswered questions, and potential avenues for future research in this field.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2023.3234327</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-7417-9398</orcidid><orcidid>https://orcid.org/0000-0002-8678-5691</orcidid><orcidid>https://orcid.org/0000-0002-9264-9274</orcidid><orcidid>https://orcid.org/0000-0002-6004-385X</orcidid><orcidid>https://orcid.org/0000-0003-0101-3834</orcidid><orcidid>https://orcid.org/0000-0002-3035-4112</orcidid><orcidid>https://orcid.org/0000-0003-3145-1018</orcidid><orcidid>https://orcid.org/0000-0001-9578-0297</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2023-07, Vol.41 (14), p.4557-4581
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_10006884
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Back propagation networks
Bayesian optimizer
Clustering
coherent detection
Complexity
computational complexity
Computational modeling
Equalizers
Fiber nonlinear optics
neural network
Neural networks
nonlinear equalizer
Nonlinear optics
Optical communication
Optical fibers
Optimization
pruning
quantization
Symbols
title Reducing Computational Complexity of Neural Networks in Optical Channel Equalization: From Concepts to Implementation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20Computational%20Complexity%20of%20Neural%20Networks%20in%20Optical%20Channel%20Equalization:%20From%20Concepts%20to%20Implementation&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Freire,%20Pedro%20J.&rft.date=2023-07-15&rft.volume=41&rft.issue=14&rft.spage=4557&rft.epage=4581&rft.pages=4557-4581&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2023.3234327&rft_dat=%3Cproquest_ieee_%3E2839516174%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839516174&rft_id=info:pmid/&rft_ieee_id=10006884&rfr_iscdi=true