Densest Periodic Subgraph Mining on Large Temporal Graphs
Densest subgraphs are often interpreted as communities , based on a basic assumption that the connections inside a community are much denser than those between communities. In a graph with temporal information, a densest periodic subgraph is the most densely connected periodic behavior which needs t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2023-11, Vol.35 (11), p.1-14 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 35 |
creator | Qin, Hongchao Li, Rong-Hua Yuan, Ye Dai, Yongheng Wang, Guoren |
description | Densest subgraphs are often interpreted as communities , based on a basic assumption that the connections inside a community are much denser than those between communities. In a graph with temporal information, a densest periodic subgraph is the most densely connected periodic behavior which needs to be captured. Unfortunately, the existing work do not model the densest periodic subgraph in temporal graphs, and the current algorithms for mining the densest subgraph cannot be applied to detect the densest periodic subgraph in the temporal networks. To tackle this problem, we propose a novel model, called the densest \sigma-periodic subgraph, which presents the densest periodic subgraph whose period size is \sigma. We prove that finding the densest \sigma-periodic subgraph can be solved in polynomial time, but it is still challenging because the naive algorithm needs to repeatedly invoke a maximum flow algorithm for many periodic subgraphs. To compute the densest \sigma-periodic subgraph efficiently, we first develop an effective pruning technique based on the degeneracy of the graph to significantly prune the number of the periodic subgraphs. Then, we present a more efficient algorithm that can reduce the computations for the degeneracy and maximum flow. Next, we develop a greedy algorithm that can compute the approximate densest \sigma-periodic subgraph and achieve an approximation ratio of 1/2. Finally, the results of extensive experiments on several real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms. |
doi_str_mv | 10.1109/TKDE.2022.3233788 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10005861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10005861</ieee_id><sourcerecordid>2873585142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-945c9e05d3f5ec1bdc8a9af0ece24770155b849e6195004fd10ab944b4ab11403</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFY_gOAh4Dl1Zv80u0dpaxUjCtbzstlMakqbxN324Lc3oT14mgfz3szjx9gtwgQRzMPqdb6YcOB8IrgQmdZnbIRK6ZSjwfNeg8RUCpldsqsYNwCgM40jZubURIr75INC3Za1Tz4PxTq47jt5q5u6WSdtk-QurClZ0a5rg9smy2Edr9lF5baRbk5zzL6eFqvZc5q_L19mj3nquZH71EjlDYEqRaXIY1F67YyrgDxxmWXQlyy0NDRFowBkVSK4wkhZSFcgShBjdn-824X259BXtZv2EJr-peU6E0orlLx34dHlQxtjoMp2od658GsR7EDIDoTsQMieCPWZu2OmJqJ_fgClpyj-ACjZYHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873585142</pqid></control><display><type>article</type><title>Densest Periodic Subgraph Mining on Large Temporal Graphs</title><source>IEEE Electronic Library (IEL)</source><creator>Qin, Hongchao ; Li, Rong-Hua ; Yuan, Ye ; Dai, Yongheng ; Wang, Guoren</creator><creatorcontrib>Qin, Hongchao ; Li, Rong-Hua ; Yuan, Ye ; Dai, Yongheng ; Wang, Guoren</creatorcontrib><description><![CDATA[Densest subgraphs are often interpreted as communities , based on a basic assumption that the connections inside a community are much denser than those between communities. In a graph with temporal information, a densest periodic subgraph is the most densely connected periodic behavior which needs to be captured. Unfortunately, the existing work do not model the densest periodic subgraph in temporal graphs, and the current algorithms for mining the densest subgraph cannot be applied to detect the densest periodic subgraph in the temporal networks. To tackle this problem, we propose a novel model, called the densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph, which presents the densest periodic subgraph whose period size is <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>. We prove that finding the densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph can be solved in polynomial time, but it is still challenging because the naive algorithm needs to repeatedly invoke a maximum flow algorithm for many periodic subgraphs. To compute the densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph efficiently, we first develop an effective pruning technique based on the degeneracy of the graph to significantly prune the number of the periodic subgraphs. Then, we present a more efficient algorithm that can reduce the computations for the degeneracy and maximum flow. Next, we develop a greedy algorithm that can compute the approximate densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph and achieve an approximation ratio of 1/2. Finally, the results of extensive experiments on several real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.]]></description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3233788</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Animals ; Approximation algorithms ; Behavioral sciences ; Densest Subgraph ; Graph theory ; Graphs ; Greedy algorithms ; Hospitals ; Periodic Subgraph ; Polynomials ; Scalability ; Social networking (online) ; Task analysis ; Temporal Graph</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-11, Vol.35 (11), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-945c9e05d3f5ec1bdc8a9af0ece24770155b849e6195004fd10ab944b4ab11403</citedby><cites>FETCH-LOGICAL-c294t-945c9e05d3f5ec1bdc8a9af0ece24770155b849e6195004fd10ab944b4ab11403</cites><orcidid>0000-0002-0247-9866 ; 0000-0002-0181-8379 ; 0000-0003-4364-0633 ; 0000-0001-8658-6599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10005861$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10005861$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qin, Hongchao</creatorcontrib><creatorcontrib>Li, Rong-Hua</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Dai, Yongheng</creatorcontrib><creatorcontrib>Wang, Guoren</creatorcontrib><title>Densest Periodic Subgraph Mining on Large Temporal Graphs</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description><![CDATA[Densest subgraphs are often interpreted as communities , based on a basic assumption that the connections inside a community are much denser than those between communities. In a graph with temporal information, a densest periodic subgraph is the most densely connected periodic behavior which needs to be captured. Unfortunately, the existing work do not model the densest periodic subgraph in temporal graphs, and the current algorithms for mining the densest subgraph cannot be applied to detect the densest periodic subgraph in the temporal networks. To tackle this problem, we propose a novel model, called the densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph, which presents the densest periodic subgraph whose period size is <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>. We prove that finding the densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph can be solved in polynomial time, but it is still challenging because the naive algorithm needs to repeatedly invoke a maximum flow algorithm for many periodic subgraphs. To compute the densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph efficiently, we first develop an effective pruning technique based on the degeneracy of the graph to significantly prune the number of the periodic subgraphs. Then, we present a more efficient algorithm that can reduce the computations for the degeneracy and maximum flow. Next, we develop a greedy algorithm that can compute the approximate densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph and achieve an approximation ratio of 1/2. Finally, the results of extensive experiments on several real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.]]></description><subject>Algorithms</subject><subject>Animals</subject><subject>Approximation algorithms</subject><subject>Behavioral sciences</subject><subject>Densest Subgraph</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Greedy algorithms</subject><subject>Hospitals</subject><subject>Periodic Subgraph</subject><subject>Polynomials</subject><subject>Scalability</subject><subject>Social networking (online)</subject><subject>Task analysis</subject><subject>Temporal Graph</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsFY_gOAh4Dl1Zv80u0dpaxUjCtbzstlMakqbxN324Lc3oT14mgfz3szjx9gtwgQRzMPqdb6YcOB8IrgQmdZnbIRK6ZSjwfNeg8RUCpldsqsYNwCgM40jZubURIr75INC3Za1Tz4PxTq47jt5q5u6WSdtk-QurClZ0a5rg9smy2Edr9lF5baRbk5zzL6eFqvZc5q_L19mj3nquZH71EjlDYEqRaXIY1F67YyrgDxxmWXQlyy0NDRFowBkVSK4wkhZSFcgShBjdn-824X259BXtZv2EJr-peU6E0orlLx34dHlQxtjoMp2od658GsR7EDIDoTsQMieCPWZu2OmJqJ_fgClpyj-ACjZYHY</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Qin, Hongchao</creator><creator>Li, Rong-Hua</creator><creator>Yuan, Ye</creator><creator>Dai, Yongheng</creator><creator>Wang, Guoren</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0247-9866</orcidid><orcidid>https://orcid.org/0000-0002-0181-8379</orcidid><orcidid>https://orcid.org/0000-0003-4364-0633</orcidid><orcidid>https://orcid.org/0000-0001-8658-6599</orcidid></search><sort><creationdate>20231101</creationdate><title>Densest Periodic Subgraph Mining on Large Temporal Graphs</title><author>Qin, Hongchao ; Li, Rong-Hua ; Yuan, Ye ; Dai, Yongheng ; Wang, Guoren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-945c9e05d3f5ec1bdc8a9af0ece24770155b849e6195004fd10ab944b4ab11403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Approximation algorithms</topic><topic>Behavioral sciences</topic><topic>Densest Subgraph</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Greedy algorithms</topic><topic>Hospitals</topic><topic>Periodic Subgraph</topic><topic>Polynomials</topic><topic>Scalability</topic><topic>Social networking (online)</topic><topic>Task analysis</topic><topic>Temporal Graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Hongchao</creatorcontrib><creatorcontrib>Li, Rong-Hua</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Dai, Yongheng</creatorcontrib><creatorcontrib>Wang, Guoren</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qin, Hongchao</au><au>Li, Rong-Hua</au><au>Yuan, Ye</au><au>Dai, Yongheng</au><au>Wang, Guoren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Densest Periodic Subgraph Mining on Large Temporal Graphs</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>35</volume><issue>11</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract><![CDATA[Densest subgraphs are often interpreted as communities , based on a basic assumption that the connections inside a community are much denser than those between communities. In a graph with temporal information, a densest periodic subgraph is the most densely connected periodic behavior which needs to be captured. Unfortunately, the existing work do not model the densest periodic subgraph in temporal graphs, and the current algorithms for mining the densest subgraph cannot be applied to detect the densest periodic subgraph in the temporal networks. To tackle this problem, we propose a novel model, called the densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph, which presents the densest periodic subgraph whose period size is <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>. We prove that finding the densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph can be solved in polynomial time, but it is still challenging because the naive algorithm needs to repeatedly invoke a maximum flow algorithm for many periodic subgraphs. To compute the densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph efficiently, we first develop an effective pruning technique based on the degeneracy of the graph to significantly prune the number of the periodic subgraphs. Then, we present a more efficient algorithm that can reduce the computations for the degeneracy and maximum flow. Next, we develop a greedy algorithm that can compute the approximate densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph and achieve an approximation ratio of 1/2. Finally, the results of extensive experiments on several real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3233788</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0247-9866</orcidid><orcidid>https://orcid.org/0000-0002-0181-8379</orcidid><orcidid>https://orcid.org/0000-0003-4364-0633</orcidid><orcidid>https://orcid.org/0000-0001-8658-6599</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2023-11, Vol.35 (11), p.1-14 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_ieee_primary_10005861 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Animals Approximation algorithms Behavioral sciences Densest Subgraph Graph theory Graphs Greedy algorithms Hospitals Periodic Subgraph Polynomials Scalability Social networking (online) Task analysis Temporal Graph |
title | Densest Periodic Subgraph Mining on Large Temporal Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Densest%20Periodic%20Subgraph%20Mining%20on%20Large%20Temporal%20Graphs&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Qin,%20Hongchao&rft.date=2023-11-01&rft.volume=35&rft.issue=11&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3233788&rft_dat=%3Cproquest_RIE%3E2873585142%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873585142&rft_id=info:pmid/&rft_ieee_id=10005861&rfr_iscdi=true |