Densest Periodic Subgraph Mining on Large Temporal Graphs

Densest subgraphs are often interpreted as communities , based on a basic assumption that the connections inside a community are much denser than those between communities. In a graph with temporal information, a densest periodic subgraph is the most densely connected periodic behavior which needs t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-11, Vol.35 (11), p.1-14
Hauptverfasser: Qin, Hongchao, Li, Rong-Hua, Yuan, Ye, Dai, Yongheng, Wang, Guoren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 11
container_start_page 1
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Qin, Hongchao
Li, Rong-Hua
Yuan, Ye
Dai, Yongheng
Wang, Guoren
description Densest subgraphs are often interpreted as communities , based on a basic assumption that the connections inside a community are much denser than those between communities. In a graph with temporal information, a densest periodic subgraph is the most densely connected periodic behavior which needs to be captured. Unfortunately, the existing work do not model the densest periodic subgraph in temporal graphs, and the current algorithms for mining the densest subgraph cannot be applied to detect the densest periodic subgraph in the temporal networks. To tackle this problem, we propose a novel model, called the densest \sigma-periodic subgraph, which presents the densest periodic subgraph whose period size is \sigma. We prove that finding the densest \sigma-periodic subgraph can be solved in polynomial time, but it is still challenging because the naive algorithm needs to repeatedly invoke a maximum flow algorithm for many periodic subgraphs. To compute the densest \sigma-periodic subgraph efficiently, we first develop an effective pruning technique based on the degeneracy of the graph to significantly prune the number of the periodic subgraphs. Then, we present a more efficient algorithm that can reduce the computations for the degeneracy and maximum flow. Next, we develop a greedy algorithm that can compute the approximate densest \sigma-periodic subgraph and achieve an approximation ratio of 1/2. Finally, the results of extensive experiments on several real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.
doi_str_mv 10.1109/TKDE.2022.3233788
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10005861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10005861</ieee_id><sourcerecordid>2873585142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-945c9e05d3f5ec1bdc8a9af0ece24770155b849e6195004fd10ab944b4ab11403</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFY_gOAh4Dl1Zv80u0dpaxUjCtbzstlMakqbxN324Lc3oT14mgfz3szjx9gtwgQRzMPqdb6YcOB8IrgQmdZnbIRK6ZSjwfNeg8RUCpldsqsYNwCgM40jZubURIr75INC3Za1Tz4PxTq47jt5q5u6WSdtk-QurClZ0a5rg9smy2Edr9lF5baRbk5zzL6eFqvZc5q_L19mj3nquZH71EjlDYEqRaXIY1F67YyrgDxxmWXQlyy0NDRFowBkVSK4wkhZSFcgShBjdn-824X259BXtZv2EJr-peU6E0orlLx34dHlQxtjoMp2od658GsR7EDIDoTsQMieCPWZu2OmJqJ_fgClpyj-ACjZYHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873585142</pqid></control><display><type>article</type><title>Densest Periodic Subgraph Mining on Large Temporal Graphs</title><source>IEEE Electronic Library (IEL)</source><creator>Qin, Hongchao ; Li, Rong-Hua ; Yuan, Ye ; Dai, Yongheng ; Wang, Guoren</creator><creatorcontrib>Qin, Hongchao ; Li, Rong-Hua ; Yuan, Ye ; Dai, Yongheng ; Wang, Guoren</creatorcontrib><description><![CDATA[Densest subgraphs are often interpreted as communities , based on a basic assumption that the connections inside a community are much denser than those between communities. In a graph with temporal information, a densest periodic subgraph is the most densely connected periodic behavior which needs to be captured. Unfortunately, the existing work do not model the densest periodic subgraph in temporal graphs, and the current algorithms for mining the densest subgraph cannot be applied to detect the densest periodic subgraph in the temporal networks. To tackle this problem, we propose a novel model, called the densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph, which presents the densest periodic subgraph whose period size is <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>. We prove that finding the densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph can be solved in polynomial time, but it is still challenging because the naive algorithm needs to repeatedly invoke a maximum flow algorithm for many periodic subgraphs. To compute the densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph efficiently, we first develop an effective pruning technique based on the degeneracy of the graph to significantly prune the number of the periodic subgraphs. Then, we present a more efficient algorithm that can reduce the computations for the degeneracy and maximum flow. Next, we develop a greedy algorithm that can compute the approximate densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph and achieve an approximation ratio of 1/2. Finally, the results of extensive experiments on several real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.]]></description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3233788</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Animals ; Approximation algorithms ; Behavioral sciences ; Densest Subgraph ; Graph theory ; Graphs ; Greedy algorithms ; Hospitals ; Periodic Subgraph ; Polynomials ; Scalability ; Social networking (online) ; Task analysis ; Temporal Graph</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-11, Vol.35 (11), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-945c9e05d3f5ec1bdc8a9af0ece24770155b849e6195004fd10ab944b4ab11403</citedby><cites>FETCH-LOGICAL-c294t-945c9e05d3f5ec1bdc8a9af0ece24770155b849e6195004fd10ab944b4ab11403</cites><orcidid>0000-0002-0247-9866 ; 0000-0002-0181-8379 ; 0000-0003-4364-0633 ; 0000-0001-8658-6599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10005861$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10005861$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qin, Hongchao</creatorcontrib><creatorcontrib>Li, Rong-Hua</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Dai, Yongheng</creatorcontrib><creatorcontrib>Wang, Guoren</creatorcontrib><title>Densest Periodic Subgraph Mining on Large Temporal Graphs</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description><![CDATA[Densest subgraphs are often interpreted as communities , based on a basic assumption that the connections inside a community are much denser than those between communities. In a graph with temporal information, a densest periodic subgraph is the most densely connected periodic behavior which needs to be captured. Unfortunately, the existing work do not model the densest periodic subgraph in temporal graphs, and the current algorithms for mining the densest subgraph cannot be applied to detect the densest periodic subgraph in the temporal networks. To tackle this problem, we propose a novel model, called the densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph, which presents the densest periodic subgraph whose period size is <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>. We prove that finding the densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph can be solved in polynomial time, but it is still challenging because the naive algorithm needs to repeatedly invoke a maximum flow algorithm for many periodic subgraphs. To compute the densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph efficiently, we first develop an effective pruning technique based on the degeneracy of the graph to significantly prune the number of the periodic subgraphs. Then, we present a more efficient algorithm that can reduce the computations for the degeneracy and maximum flow. Next, we develop a greedy algorithm that can compute the approximate densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph and achieve an approximation ratio of 1/2. Finally, the results of extensive experiments on several real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.]]></description><subject>Algorithms</subject><subject>Animals</subject><subject>Approximation algorithms</subject><subject>Behavioral sciences</subject><subject>Densest Subgraph</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Greedy algorithms</subject><subject>Hospitals</subject><subject>Periodic Subgraph</subject><subject>Polynomials</subject><subject>Scalability</subject><subject>Social networking (online)</subject><subject>Task analysis</subject><subject>Temporal Graph</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsFY_gOAh4Dl1Zv80u0dpaxUjCtbzstlMakqbxN324Lc3oT14mgfz3szjx9gtwgQRzMPqdb6YcOB8IrgQmdZnbIRK6ZSjwfNeg8RUCpldsqsYNwCgM40jZubURIr75INC3Za1Tz4PxTq47jt5q5u6WSdtk-QurClZ0a5rg9smy2Edr9lF5baRbk5zzL6eFqvZc5q_L19mj3nquZH71EjlDYEqRaXIY1F67YyrgDxxmWXQlyy0NDRFowBkVSK4wkhZSFcgShBjdn-824X259BXtZv2EJr-peU6E0orlLx34dHlQxtjoMp2od658GsR7EDIDoTsQMieCPWZu2OmJqJ_fgClpyj-ACjZYHY</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Qin, Hongchao</creator><creator>Li, Rong-Hua</creator><creator>Yuan, Ye</creator><creator>Dai, Yongheng</creator><creator>Wang, Guoren</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0247-9866</orcidid><orcidid>https://orcid.org/0000-0002-0181-8379</orcidid><orcidid>https://orcid.org/0000-0003-4364-0633</orcidid><orcidid>https://orcid.org/0000-0001-8658-6599</orcidid></search><sort><creationdate>20231101</creationdate><title>Densest Periodic Subgraph Mining on Large Temporal Graphs</title><author>Qin, Hongchao ; Li, Rong-Hua ; Yuan, Ye ; Dai, Yongheng ; Wang, Guoren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-945c9e05d3f5ec1bdc8a9af0ece24770155b849e6195004fd10ab944b4ab11403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Approximation algorithms</topic><topic>Behavioral sciences</topic><topic>Densest Subgraph</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Greedy algorithms</topic><topic>Hospitals</topic><topic>Periodic Subgraph</topic><topic>Polynomials</topic><topic>Scalability</topic><topic>Social networking (online)</topic><topic>Task analysis</topic><topic>Temporal Graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Hongchao</creatorcontrib><creatorcontrib>Li, Rong-Hua</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Dai, Yongheng</creatorcontrib><creatorcontrib>Wang, Guoren</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qin, Hongchao</au><au>Li, Rong-Hua</au><au>Yuan, Ye</au><au>Dai, Yongheng</au><au>Wang, Guoren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Densest Periodic Subgraph Mining on Large Temporal Graphs</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>35</volume><issue>11</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract><![CDATA[Densest subgraphs are often interpreted as communities , based on a basic assumption that the connections inside a community are much denser than those between communities. In a graph with temporal information, a densest periodic subgraph is the most densely connected periodic behavior which needs to be captured. Unfortunately, the existing work do not model the densest periodic subgraph in temporal graphs, and the current algorithms for mining the densest subgraph cannot be applied to detect the densest periodic subgraph in the temporal networks. To tackle this problem, we propose a novel model, called the densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph, which presents the densest periodic subgraph whose period size is <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>. We prove that finding the densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph can be solved in polynomial time, but it is still challenging because the naive algorithm needs to repeatedly invoke a maximum flow algorithm for many periodic subgraphs. To compute the densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph efficiently, we first develop an effective pruning technique based on the degeneracy of the graph to significantly prune the number of the periodic subgraphs. Then, we present a more efficient algorithm that can reduce the computations for the degeneracy and maximum flow. Next, we develop a greedy algorithm that can compute the approximate densest <inline-formula><tex-math notation="LaTeX">\sigma</tex-math></inline-formula>-periodic subgraph and achieve an approximation ratio of 1/2. Finally, the results of extensive experiments on several real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3233788</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0247-9866</orcidid><orcidid>https://orcid.org/0000-0002-0181-8379</orcidid><orcidid>https://orcid.org/0000-0003-4364-0633</orcidid><orcidid>https://orcid.org/0000-0001-8658-6599</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-11, Vol.35 (11), p.1-14
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_10005861
source IEEE Electronic Library (IEL)
subjects Algorithms
Animals
Approximation algorithms
Behavioral sciences
Densest Subgraph
Graph theory
Graphs
Greedy algorithms
Hospitals
Periodic Subgraph
Polynomials
Scalability
Social networking (online)
Task analysis
Temporal Graph
title Densest Periodic Subgraph Mining on Large Temporal Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Densest%20Periodic%20Subgraph%20Mining%20on%20Large%20Temporal%20Graphs&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Qin,%20Hongchao&rft.date=2023-11-01&rft.volume=35&rft.issue=11&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3233788&rft_dat=%3Cproquest_RIE%3E2873585142%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873585142&rft_id=info:pmid/&rft_ieee_id=10005861&rfr_iscdi=true