Model-Based Data Augmentation Applied to Deep Learning Networks for Classification of Micro-Doppler Signatures Using FMCW Radar
Deep neural networks (DNNs) have become a relevant subject in the classification of radio frequency signals and remote sensing data. A primary challenge is a tradeoff between obtaining data that are suitable for DNN training and the effort that making experimental measurements requires. Hence, the q...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2023-05, Vol.71 (5), p.1-15 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 71 |
creator | Rojhani, Neda Passafiume, Marco Sadeghibakhi, Mehdi Collodi, Giovanni Cidronali, Alessandro |
description | Deep neural networks (DNNs) have become a relevant subject in the classification of radio frequency signals and remote sensing data. A primary challenge is a tradeoff between obtaining data that are suitable for DNN training and the effort that making experimental measurements requires. Hence, the quality and quantity of data used for the training and testing of models are crucial for effective classifier development. The training dataset should cover a wide range of cases that synthesize the actual scenarios being classified. This work proposes a novel data augmentation method based on a deterministic model to generate a simulated dataset of radar micro-Doppler signatures suitable for unmanned aerial vehicle (UAV) target classification, without requiring measurement data. It is shown that the DNN trained using the properly generated model-based data offers improved classification accuracy performance. Results are presented for a two-class classification of the number of UAV motors using a 77-GHz frequency-modulated continuous-wave (FMCW) automotive radar system. The effectiveness of the proposed methodology is proven: a classification accuracy of 78.68% is achieved using a convolutional neural network (CNN) trained using the synthetic dataset, while an accuracy of 66.18% is achieved by using a typical signal processing data augmentation method on a limited measured dataset. |
doi_str_mv | 10.1109/TMTT.2023.3231371 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10004894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10004894</ieee_id><sourcerecordid>2809890568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-c0182e6184171440eac0ab0c6fdd317dc5e925ffe00a426998e0de160b0eb8913</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqbDYfu8faWhUaBU3xGLbJpGxNs3E3QTz5101ID56GYd5nZngIuWYwYwzkXZqk6cwHn8-4zxmP2QmZsDCMPRnFcEomAEx4MhBwTi6c2_dtEIKYkN_EFFh598phQZeqVXTe7Q5Yt6rVpqbzpql0P2kNXSI2dI3K1rre0Rdsv439dLQ0li4q5ZwudT5CpqSJzq3xlqbH0dJ3vatV21l0dOMGepUsPuibKpS9JGelqhxeHeuUbFYP6eLJW78-Pi_may_nPG69vH_fx4iJgMUsCABVDmoLeVQWBWdxkYco_bAsEUAFfiSlQCiQRbAF3ArJ-JTcjnsba746dG22N52t-5OZL0AKCWEk-hQbU_33zlkss8bqg7I_GYNs8JwNnrPBc3b03DM3I6MR8V8eIBAy4H8K4nn2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809890568</pqid></control><display><type>article</type><title>Model-Based Data Augmentation Applied to Deep Learning Networks for Classification of Micro-Doppler Signatures Using FMCW Radar</title><source>IEEE Electronic Library (IEL)</source><creator>Rojhani, Neda ; Passafiume, Marco ; Sadeghibakhi, Mehdi ; Collodi, Giovanni ; Cidronali, Alessandro</creator><creatorcontrib>Rojhani, Neda ; Passafiume, Marco ; Sadeghibakhi, Mehdi ; Collodi, Giovanni ; Cidronali, Alessandro</creatorcontrib><description>Deep neural networks (DNNs) have become a relevant subject in the classification of radio frequency signals and remote sensing data. A primary challenge is a tradeoff between obtaining data that are suitable for DNN training and the effort that making experimental measurements requires. Hence, the quality and quantity of data used for the training and testing of models are crucial for effective classifier development. The training dataset should cover a wide range of cases that synthesize the actual scenarios being classified. This work proposes a novel data augmentation method based on a deterministic model to generate a simulated dataset of radar micro-Doppler signatures suitable for unmanned aerial vehicle (UAV) target classification, without requiring measurement data. It is shown that the DNN trained using the properly generated model-based data offers improved classification accuracy performance. Results are presented for a two-class classification of the number of UAV motors using a 77-GHz frequency-modulated continuous-wave (FMCW) automotive radar system. The effectiveness of the proposed methodology is proven: a classification accuracy of 78.68% is achieved using a convolutional neural network (CNN) trained using the synthetic dataset, while an accuracy of 66.18% is achieved by using a typical signal processing data augmentation method on a limited measured dataset.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2023.3231371</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Automotive radar ; Classification ; Continuous radiation ; Data augmentation ; Data models ; Data processing ; Datasets ; deep convolutional neural network (CNN) ; Drones ; Engines ; Machine learning ; micro-Doppler signatures ; Neural networks ; Radar ; radar classification ; Radar cross-sections ; Radar equipment ; Radar signatures ; Radio signals ; Remote sensing ; remote sensing imagery ; Signal processing ; Synthetic data ; Training ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on microwave theory and techniques, 2023-05, Vol.71 (5), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-c0182e6184171440eac0ab0c6fdd317dc5e925ffe00a426998e0de160b0eb8913</citedby><cites>FETCH-LOGICAL-c337t-c0182e6184171440eac0ab0c6fdd317dc5e925ffe00a426998e0de160b0eb8913</cites><orcidid>0000-0002-1064-7305 ; 0000-0002-9620-810X ; 0000-0003-4507-6888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10004894$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Rojhani, Neda</creatorcontrib><creatorcontrib>Passafiume, Marco</creatorcontrib><creatorcontrib>Sadeghibakhi, Mehdi</creatorcontrib><creatorcontrib>Collodi, Giovanni</creatorcontrib><creatorcontrib>Cidronali, Alessandro</creatorcontrib><title>Model-Based Data Augmentation Applied to Deep Learning Networks for Classification of Micro-Doppler Signatures Using FMCW Radar</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>Deep neural networks (DNNs) have become a relevant subject in the classification of radio frequency signals and remote sensing data. A primary challenge is a tradeoff between obtaining data that are suitable for DNN training and the effort that making experimental measurements requires. Hence, the quality and quantity of data used for the training and testing of models are crucial for effective classifier development. The training dataset should cover a wide range of cases that synthesize the actual scenarios being classified. This work proposes a novel data augmentation method based on a deterministic model to generate a simulated dataset of radar micro-Doppler signatures suitable for unmanned aerial vehicle (UAV) target classification, without requiring measurement data. It is shown that the DNN trained using the properly generated model-based data offers improved classification accuracy performance. Results are presented for a two-class classification of the number of UAV motors using a 77-GHz frequency-modulated continuous-wave (FMCW) automotive radar system. The effectiveness of the proposed methodology is proven: a classification accuracy of 78.68% is achieved using a convolutional neural network (CNN) trained using the synthetic dataset, while an accuracy of 66.18% is achieved by using a typical signal processing data augmentation method on a limited measured dataset.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Automotive radar</subject><subject>Classification</subject><subject>Continuous radiation</subject><subject>Data augmentation</subject><subject>Data models</subject><subject>Data processing</subject><subject>Datasets</subject><subject>deep convolutional neural network (CNN)</subject><subject>Drones</subject><subject>Engines</subject><subject>Machine learning</subject><subject>micro-Doppler signatures</subject><subject>Neural networks</subject><subject>Radar</subject><subject>radar classification</subject><subject>Radar cross-sections</subject><subject>Radar equipment</subject><subject>Radar signatures</subject><subject>Radio signals</subject><subject>Remote sensing</subject><subject>remote sensing imagery</subject><subject>Signal processing</subject><subject>Synthetic data</subject><subject>Training</subject><subject>Unmanned aerial vehicles</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqbDYfu8faWhUaBU3xGLbJpGxNs3E3QTz5101ID56GYd5nZngIuWYwYwzkXZqk6cwHn8-4zxmP2QmZsDCMPRnFcEomAEx4MhBwTi6c2_dtEIKYkN_EFFh598phQZeqVXTe7Q5Yt6rVpqbzpql0P2kNXSI2dI3K1rre0Rdsv439dLQ0li4q5ZwudT5CpqSJzq3xlqbH0dJ3vatV21l0dOMGepUsPuibKpS9JGelqhxeHeuUbFYP6eLJW78-Pi_may_nPG69vH_fx4iJgMUsCABVDmoLeVQWBWdxkYco_bAsEUAFfiSlQCiQRbAF3ArJ-JTcjnsba746dG22N52t-5OZL0AKCWEk-hQbU_33zlkss8bqg7I_GYNs8JwNnrPBc3b03DM3I6MR8V8eIBAy4H8K4nn2</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Rojhani, Neda</creator><creator>Passafiume, Marco</creator><creator>Sadeghibakhi, Mehdi</creator><creator>Collodi, Giovanni</creator><creator>Cidronali, Alessandro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1064-7305</orcidid><orcidid>https://orcid.org/0000-0002-9620-810X</orcidid><orcidid>https://orcid.org/0000-0003-4507-6888</orcidid></search><sort><creationdate>20230501</creationdate><title>Model-Based Data Augmentation Applied to Deep Learning Networks for Classification of Micro-Doppler Signatures Using FMCW Radar</title><author>Rojhani, Neda ; Passafiume, Marco ; Sadeghibakhi, Mehdi ; Collodi, Giovanni ; Cidronali, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-c0182e6184171440eac0ab0c6fdd317dc5e925ffe00a426998e0de160b0eb8913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Automotive radar</topic><topic>Classification</topic><topic>Continuous radiation</topic><topic>Data augmentation</topic><topic>Data models</topic><topic>Data processing</topic><topic>Datasets</topic><topic>deep convolutional neural network (CNN)</topic><topic>Drones</topic><topic>Engines</topic><topic>Machine learning</topic><topic>micro-Doppler signatures</topic><topic>Neural networks</topic><topic>Radar</topic><topic>radar classification</topic><topic>Radar cross-sections</topic><topic>Radar equipment</topic><topic>Radar signatures</topic><topic>Radio signals</topic><topic>Remote sensing</topic><topic>remote sensing imagery</topic><topic>Signal processing</topic><topic>Synthetic data</topic><topic>Training</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rojhani, Neda</creatorcontrib><creatorcontrib>Passafiume, Marco</creatorcontrib><creatorcontrib>Sadeghibakhi, Mehdi</creatorcontrib><creatorcontrib>Collodi, Giovanni</creatorcontrib><creatorcontrib>Cidronali, Alessandro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rojhani, Neda</au><au>Passafiume, Marco</au><au>Sadeghibakhi, Mehdi</au><au>Collodi, Giovanni</au><au>Cidronali, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Based Data Augmentation Applied to Deep Learning Networks for Classification of Micro-Doppler Signatures Using FMCW Radar</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>71</volume><issue>5</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>Deep neural networks (DNNs) have become a relevant subject in the classification of radio frequency signals and remote sensing data. A primary challenge is a tradeoff between obtaining data that are suitable for DNN training and the effort that making experimental measurements requires. Hence, the quality and quantity of data used for the training and testing of models are crucial for effective classifier development. The training dataset should cover a wide range of cases that synthesize the actual scenarios being classified. This work proposes a novel data augmentation method based on a deterministic model to generate a simulated dataset of radar micro-Doppler signatures suitable for unmanned aerial vehicle (UAV) target classification, without requiring measurement data. It is shown that the DNN trained using the properly generated model-based data offers improved classification accuracy performance. Results are presented for a two-class classification of the number of UAV motors using a 77-GHz frequency-modulated continuous-wave (FMCW) automotive radar system. The effectiveness of the proposed methodology is proven: a classification accuracy of 78.68% is achieved using a convolutional neural network (CNN) trained using the synthetic dataset, while an accuracy of 66.18% is achieved by using a typical signal processing data augmentation method on a limited measured dataset.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2023.3231371</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1064-7305</orcidid><orcidid>https://orcid.org/0000-0002-9620-810X</orcidid><orcidid>https://orcid.org/0000-0003-4507-6888</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2023-05, Vol.71 (5), p.1-15 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_ieee_primary_10004894 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Artificial neural networks Automotive radar Classification Continuous radiation Data augmentation Data models Data processing Datasets deep convolutional neural network (CNN) Drones Engines Machine learning micro-Doppler signatures Neural networks Radar radar classification Radar cross-sections Radar equipment Radar signatures Radio signals Remote sensing remote sensing imagery Signal processing Synthetic data Training Unmanned aerial vehicles |
title | Model-Based Data Augmentation Applied to Deep Learning Networks for Classification of Micro-Doppler Signatures Using FMCW Radar |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Based%20Data%20Augmentation%20Applied%20to%20Deep%20Learning%20Networks%20for%20Classification%20of%20Micro-Doppler%20Signatures%20Using%20FMCW%20Radar&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Rojhani,%20Neda&rft.date=2023-05-01&rft.volume=71&rft.issue=5&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2023.3231371&rft_dat=%3Cproquest_ieee_%3E2809890568%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809890568&rft_id=info:pmid/&rft_ieee_id=10004894&rfr_iscdi=true |