Model-Based Data Augmentation Applied to Deep Learning Networks for Classification of Micro-Doppler Signatures Using FMCW Radar

Deep neural networks (DNNs) have become a relevant subject in the classification of radio frequency signals and remote sensing data. A primary challenge is a tradeoff between obtaining data that are suitable for DNN training and the effort that making experimental measurements requires. Hence, the q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2023-05, Vol.71 (5), p.1-15
Hauptverfasser: Rojhani, Neda, Passafiume, Marco, Sadeghibakhi, Mehdi, Collodi, Giovanni, Cidronali, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 5
container_start_page 1
container_title IEEE transactions on microwave theory and techniques
container_volume 71
creator Rojhani, Neda
Passafiume, Marco
Sadeghibakhi, Mehdi
Collodi, Giovanni
Cidronali, Alessandro
description Deep neural networks (DNNs) have become a relevant subject in the classification of radio frequency signals and remote sensing data. A primary challenge is a tradeoff between obtaining data that are suitable for DNN training and the effort that making experimental measurements requires. Hence, the quality and quantity of data used for the training and testing of models are crucial for effective classifier development. The training dataset should cover a wide range of cases that synthesize the actual scenarios being classified. This work proposes a novel data augmentation method based on a deterministic model to generate a simulated dataset of radar micro-Doppler signatures suitable for unmanned aerial vehicle (UAV) target classification, without requiring measurement data. It is shown that the DNN trained using the properly generated model-based data offers improved classification accuracy performance. Results are presented for a two-class classification of the number of UAV motors using a 77-GHz frequency-modulated continuous-wave (FMCW) automotive radar system. The effectiveness of the proposed methodology is proven: a classification accuracy of 78.68% is achieved using a convolutional neural network (CNN) trained using the synthetic dataset, while an accuracy of 66.18% is achieved by using a typical signal processing data augmentation method on a limited measured dataset.
doi_str_mv 10.1109/TMTT.2023.3231371
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10004894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10004894</ieee_id><sourcerecordid>2809890568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-c0182e6184171440eac0ab0c6fdd317dc5e925ffe00a426998e0de160b0eb8913</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqbDYfu8faWhUaBU3xGLbJpGxNs3E3QTz5101ID56GYd5nZngIuWYwYwzkXZqk6cwHn8-4zxmP2QmZsDCMPRnFcEomAEx4MhBwTi6c2_dtEIKYkN_EFFh598phQZeqVXTe7Q5Yt6rVpqbzpql0P2kNXSI2dI3K1rre0Rdsv439dLQ0li4q5ZwudT5CpqSJzq3xlqbH0dJ3vatV21l0dOMGepUsPuibKpS9JGelqhxeHeuUbFYP6eLJW78-Pi_may_nPG69vH_fx4iJgMUsCABVDmoLeVQWBWdxkYco_bAsEUAFfiSlQCiQRbAF3ArJ-JTcjnsba746dG22N52t-5OZL0AKCWEk-hQbU_33zlkss8bqg7I_GYNs8JwNnrPBc3b03DM3I6MR8V8eIBAy4H8K4nn2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809890568</pqid></control><display><type>article</type><title>Model-Based Data Augmentation Applied to Deep Learning Networks for Classification of Micro-Doppler Signatures Using FMCW Radar</title><source>IEEE Electronic Library (IEL)</source><creator>Rojhani, Neda ; Passafiume, Marco ; Sadeghibakhi, Mehdi ; Collodi, Giovanni ; Cidronali, Alessandro</creator><creatorcontrib>Rojhani, Neda ; Passafiume, Marco ; Sadeghibakhi, Mehdi ; Collodi, Giovanni ; Cidronali, Alessandro</creatorcontrib><description>Deep neural networks (DNNs) have become a relevant subject in the classification of radio frequency signals and remote sensing data. A primary challenge is a tradeoff between obtaining data that are suitable for DNN training and the effort that making experimental measurements requires. Hence, the quality and quantity of data used for the training and testing of models are crucial for effective classifier development. The training dataset should cover a wide range of cases that synthesize the actual scenarios being classified. This work proposes a novel data augmentation method based on a deterministic model to generate a simulated dataset of radar micro-Doppler signatures suitable for unmanned aerial vehicle (UAV) target classification, without requiring measurement data. It is shown that the DNN trained using the properly generated model-based data offers improved classification accuracy performance. Results are presented for a two-class classification of the number of UAV motors using a 77-GHz frequency-modulated continuous-wave (FMCW) automotive radar system. The effectiveness of the proposed methodology is proven: a classification accuracy of 78.68% is achieved using a convolutional neural network (CNN) trained using the synthetic dataset, while an accuracy of 66.18% is achieved by using a typical signal processing data augmentation method on a limited measured dataset.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2023.3231371</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Automotive radar ; Classification ; Continuous radiation ; Data augmentation ; Data models ; Data processing ; Datasets ; deep convolutional neural network (CNN) ; Drones ; Engines ; Machine learning ; micro-Doppler signatures ; Neural networks ; Radar ; radar classification ; Radar cross-sections ; Radar equipment ; Radar signatures ; Radio signals ; Remote sensing ; remote sensing imagery ; Signal processing ; Synthetic data ; Training ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on microwave theory and techniques, 2023-05, Vol.71 (5), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-c0182e6184171440eac0ab0c6fdd317dc5e925ffe00a426998e0de160b0eb8913</citedby><cites>FETCH-LOGICAL-c337t-c0182e6184171440eac0ab0c6fdd317dc5e925ffe00a426998e0de160b0eb8913</cites><orcidid>0000-0002-1064-7305 ; 0000-0002-9620-810X ; 0000-0003-4507-6888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10004894$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Rojhani, Neda</creatorcontrib><creatorcontrib>Passafiume, Marco</creatorcontrib><creatorcontrib>Sadeghibakhi, Mehdi</creatorcontrib><creatorcontrib>Collodi, Giovanni</creatorcontrib><creatorcontrib>Cidronali, Alessandro</creatorcontrib><title>Model-Based Data Augmentation Applied to Deep Learning Networks for Classification of Micro-Doppler Signatures Using FMCW Radar</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>Deep neural networks (DNNs) have become a relevant subject in the classification of radio frequency signals and remote sensing data. A primary challenge is a tradeoff between obtaining data that are suitable for DNN training and the effort that making experimental measurements requires. Hence, the quality and quantity of data used for the training and testing of models are crucial for effective classifier development. The training dataset should cover a wide range of cases that synthesize the actual scenarios being classified. This work proposes a novel data augmentation method based on a deterministic model to generate a simulated dataset of radar micro-Doppler signatures suitable for unmanned aerial vehicle (UAV) target classification, without requiring measurement data. It is shown that the DNN trained using the properly generated model-based data offers improved classification accuracy performance. Results are presented for a two-class classification of the number of UAV motors using a 77-GHz frequency-modulated continuous-wave (FMCW) automotive radar system. The effectiveness of the proposed methodology is proven: a classification accuracy of 78.68% is achieved using a convolutional neural network (CNN) trained using the synthetic dataset, while an accuracy of 66.18% is achieved by using a typical signal processing data augmentation method on a limited measured dataset.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Automotive radar</subject><subject>Classification</subject><subject>Continuous radiation</subject><subject>Data augmentation</subject><subject>Data models</subject><subject>Data processing</subject><subject>Datasets</subject><subject>deep convolutional neural network (CNN)</subject><subject>Drones</subject><subject>Engines</subject><subject>Machine learning</subject><subject>micro-Doppler signatures</subject><subject>Neural networks</subject><subject>Radar</subject><subject>radar classification</subject><subject>Radar cross-sections</subject><subject>Radar equipment</subject><subject>Radar signatures</subject><subject>Radio signals</subject><subject>Remote sensing</subject><subject>remote sensing imagery</subject><subject>Signal processing</subject><subject>Synthetic data</subject><subject>Training</subject><subject>Unmanned aerial vehicles</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqbDYfu8faWhUaBU3xGLbJpGxNs3E3QTz5101ID56GYd5nZngIuWYwYwzkXZqk6cwHn8-4zxmP2QmZsDCMPRnFcEomAEx4MhBwTi6c2_dtEIKYkN_EFFh598phQZeqVXTe7Q5Yt6rVpqbzpql0P2kNXSI2dI3K1rre0Rdsv439dLQ0li4q5ZwudT5CpqSJzq3xlqbH0dJ3vatV21l0dOMGepUsPuibKpS9JGelqhxeHeuUbFYP6eLJW78-Pi_may_nPG69vH_fx4iJgMUsCABVDmoLeVQWBWdxkYco_bAsEUAFfiSlQCiQRbAF3ArJ-JTcjnsba746dG22N52t-5OZL0AKCWEk-hQbU_33zlkss8bqg7I_GYNs8JwNnrPBc3b03DM3I6MR8V8eIBAy4H8K4nn2</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Rojhani, Neda</creator><creator>Passafiume, Marco</creator><creator>Sadeghibakhi, Mehdi</creator><creator>Collodi, Giovanni</creator><creator>Cidronali, Alessandro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1064-7305</orcidid><orcidid>https://orcid.org/0000-0002-9620-810X</orcidid><orcidid>https://orcid.org/0000-0003-4507-6888</orcidid></search><sort><creationdate>20230501</creationdate><title>Model-Based Data Augmentation Applied to Deep Learning Networks for Classification of Micro-Doppler Signatures Using FMCW Radar</title><author>Rojhani, Neda ; Passafiume, Marco ; Sadeghibakhi, Mehdi ; Collodi, Giovanni ; Cidronali, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-c0182e6184171440eac0ab0c6fdd317dc5e925ffe00a426998e0de160b0eb8913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Automotive radar</topic><topic>Classification</topic><topic>Continuous radiation</topic><topic>Data augmentation</topic><topic>Data models</topic><topic>Data processing</topic><topic>Datasets</topic><topic>deep convolutional neural network (CNN)</topic><topic>Drones</topic><topic>Engines</topic><topic>Machine learning</topic><topic>micro-Doppler signatures</topic><topic>Neural networks</topic><topic>Radar</topic><topic>radar classification</topic><topic>Radar cross-sections</topic><topic>Radar equipment</topic><topic>Radar signatures</topic><topic>Radio signals</topic><topic>Remote sensing</topic><topic>remote sensing imagery</topic><topic>Signal processing</topic><topic>Synthetic data</topic><topic>Training</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rojhani, Neda</creatorcontrib><creatorcontrib>Passafiume, Marco</creatorcontrib><creatorcontrib>Sadeghibakhi, Mehdi</creatorcontrib><creatorcontrib>Collodi, Giovanni</creatorcontrib><creatorcontrib>Cidronali, Alessandro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rojhani, Neda</au><au>Passafiume, Marco</au><au>Sadeghibakhi, Mehdi</au><au>Collodi, Giovanni</au><au>Cidronali, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Based Data Augmentation Applied to Deep Learning Networks for Classification of Micro-Doppler Signatures Using FMCW Radar</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>71</volume><issue>5</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>Deep neural networks (DNNs) have become a relevant subject in the classification of radio frequency signals and remote sensing data. A primary challenge is a tradeoff between obtaining data that are suitable for DNN training and the effort that making experimental measurements requires. Hence, the quality and quantity of data used for the training and testing of models are crucial for effective classifier development. The training dataset should cover a wide range of cases that synthesize the actual scenarios being classified. This work proposes a novel data augmentation method based on a deterministic model to generate a simulated dataset of radar micro-Doppler signatures suitable for unmanned aerial vehicle (UAV) target classification, without requiring measurement data. It is shown that the DNN trained using the properly generated model-based data offers improved classification accuracy performance. Results are presented for a two-class classification of the number of UAV motors using a 77-GHz frequency-modulated continuous-wave (FMCW) automotive radar system. The effectiveness of the proposed methodology is proven: a classification accuracy of 78.68% is achieved using a convolutional neural network (CNN) trained using the synthetic dataset, while an accuracy of 66.18% is achieved by using a typical signal processing data augmentation method on a limited measured dataset.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2023.3231371</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1064-7305</orcidid><orcidid>https://orcid.org/0000-0002-9620-810X</orcidid><orcidid>https://orcid.org/0000-0003-4507-6888</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2023-05, Vol.71 (5), p.1-15
issn 0018-9480
1557-9670
language eng
recordid cdi_ieee_primary_10004894
source IEEE Electronic Library (IEL)
subjects Accuracy
Artificial neural networks
Automotive radar
Classification
Continuous radiation
Data augmentation
Data models
Data processing
Datasets
deep convolutional neural network (CNN)
Drones
Engines
Machine learning
micro-Doppler signatures
Neural networks
Radar
radar classification
Radar cross-sections
Radar equipment
Radar signatures
Radio signals
Remote sensing
remote sensing imagery
Signal processing
Synthetic data
Training
Unmanned aerial vehicles
title Model-Based Data Augmentation Applied to Deep Learning Networks for Classification of Micro-Doppler Signatures Using FMCW Radar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Based%20Data%20Augmentation%20Applied%20to%20Deep%20Learning%20Networks%20for%20Classification%20of%20Micro-Doppler%20Signatures%20Using%20FMCW%20Radar&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Rojhani,%20Neda&rft.date=2023-05-01&rft.volume=71&rft.issue=5&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2023.3231371&rft_dat=%3Cproquest_ieee_%3E2809890568%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809890568&rft_id=info:pmid/&rft_ieee_id=10004894&rfr_iscdi=true