Combline Filters With Increased Stopband and One-Sided Selectivity
The letter proposes two design methods to increase the stopband and one-sided selectivity of combline bandpass filters (BPF) with mixed couplings between adjacent resonators. One method allows us to expand the stopband of a combline BPF. It is based on the location patterns of special points along t...
Gespeichert in:
Veröffentlicht in: | IEEE microwave and wireless technology letters (Print) 2023-04, Vol.33 (4), p.1-4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE microwave and wireless technology letters (Print) |
container_volume | 33 |
creator | Zakharov, Alexander Rozenko, Sergii Litvintsev, Sergii |
description | The letter proposes two design methods to increase the stopband and one-sided selectivity of combline bandpass filters (BPF) with mixed couplings between adjacent resonators. One method allows us to expand the stopband of a combline BPF. It is based on the location patterns of special points along the length of \boldsymbol{\lambda} /4 resonator and the elimination of a number of periodically located resonant frequencies using them. This method is applicable to combline BPFs with simple and mixed couplings. The second method refers to BPF with mixed coupling between adjacent resonators that contains magnetic and electrical components \acute {K}_{i,i+ 1} = K_{{m}i,i_+ 1}+ \, K_{e i,i+ 1} and generates a transmission zero f_{z i,i+1} (TZ), leading to increased selectivity. This method uses the representation of mixed coupling by admittance inverter ( Ĵ inverter) and consists of two stages. At the first stage, the absolute values \vert\acute {K}_{i,i+ 1}\vert , are determined. In this case, g -parameters of the low-frequency prototype are used. At the second stage, the components K_{m i,i+ 1} and K_{e i,i+ 1} are determined by using the f_{z i,i + 1} position. The method is applicable to N -order BPF. The experimental results are presented. |
doi_str_mv | 10.1109/LMWT.2022.3221269 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10004873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10004873</ieee_id><sourcerecordid>10_1109_LMWT_2022_3221269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-31677da7bfa856b14aa2029662f0e813628fee7a11899f14fca15b1a7fdf1a2b3</originalsourceid><addsrcrecordid>eNpNkEFLw0AQhRdRsNT-AMFD_kDiziTZ3Rw1WFuI9NBKvYXdZBZX0qTsBqH_XkOLeBje8HhvGD7G7oEnALx4rN72uwQ5YpIiAoriis1QSoiLXKnrv11-3LJFCF-ccywECshn7LkcDqZzPUVL143kQ7R342e07htPOlAbbcfhaHTfRtNseoq3rp1s6qgZ3bcbT3fsxuou0OKic_a-fNmVq7javK7LpypuUIgxTkFI2WpprFa5MJBpjdMfAi0nBalAZYmkBlBFYSGzjYbcgJa2taDRpHMG57uNH0LwZOujdwftTzXweuJQTxzqiUN94fDbeTh3HBH9y3OeKZmmPzmnWVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combline Filters With Increased Stopband and One-Sided Selectivity</title><source>IEEE Electronic Library (IEL)</source><creator>Zakharov, Alexander ; Rozenko, Sergii ; Litvintsev, Sergii</creator><creatorcontrib>Zakharov, Alexander ; Rozenko, Sergii ; Litvintsev, Sergii</creatorcontrib><description><![CDATA[The letter proposes two design methods to increase the stopband and one-sided selectivity of combline bandpass filters (BPF) with mixed couplings between adjacent resonators. One method allows us to expand the stopband of a combline BPF. It is based on the location patterns of special points along the length of <inline-formula> <tex-math notation="LaTeX">\boldsymbol{\lambda}</tex-math> </inline-formula>/4 resonator and the elimination of a number of periodically located resonant frequencies using them. This method is applicable to combline BPFs with simple and mixed couplings. The second method refers to BPF with mixed coupling between adjacent resonators that contains magnetic and electrical components <inline-formula> <tex-math notation="LaTeX">\acute {K}_{i,i+ 1} </tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">K_{{m}i,i_+ 1}+ \, K_{e i,i+ 1}</tex-math> </inline-formula> and generates a transmission zero <inline-formula> <tex-math notation="LaTeX">f_{z i,i+1}</tex-math> </inline-formula> (TZ), leading to increased selectivity. This method uses the representation of mixed coupling by admittance inverter ( Ĵ inverter) and consists of two stages. At the first stage, the absolute values <inline-formula> <tex-math notation="LaTeX">\vert\acute {K}_{i,i+ 1}\vert</tex-math> </inline-formula>, are determined. In this case, <inline-formula> <tex-math notation="LaTeX">g</tex-math> </inline-formula>-parameters of the low-frequency prototype are used. At the second stage, the components <inline-formula> <tex-math notation="LaTeX">K_{m i,i+ 1}</tex-math> </inline-formula> and <inline-formula> <tex-math notation="LaTeX">K_{e i,i+ 1}</tex-math> </inline-formula> are determined by using the <inline-formula> <tex-math notation="LaTeX">f_{z i,i + 1}</tex-math> </inline-formula> position. The method is applicable to <inline-formula> <tex-math notation="LaTeX">N</tex-math> </inline-formula>-order BPF. The experimental results are presented.]]></description><identifier>ISSN: 2771-957X</identifier><identifier>EISSN: 2771-9588</identifier><identifier>DOI: 10.1109/LMWT.2022.3221269</identifier><identifier>CODEN: IMWTAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Admittance ; Admittance inverter ; Band-pass filters ; bandpass filter (BPF) ; Couplings ; frequency responses ; Inductance ; Inverters ; Magnetic resonance ; mixed coupling ; Resonators ; stopband ; transmission zero (TZ)</subject><ispartof>IEEE microwave and wireless technology letters (Print), 2023-04, Vol.33 (4), p.1-4</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-31677da7bfa856b14aa2029662f0e813628fee7a11899f14fca15b1a7fdf1a2b3</citedby><cites>FETCH-LOGICAL-c266t-31677da7bfa856b14aa2029662f0e813628fee7a11899f14fca15b1a7fdf1a2b3</cites><orcidid>0000-0002-6171-0036 ; 0000-0002-3525-7127 ; 0000-0002-1222-1623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10004873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10004873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zakharov, Alexander</creatorcontrib><creatorcontrib>Rozenko, Sergii</creatorcontrib><creatorcontrib>Litvintsev, Sergii</creatorcontrib><title>Combline Filters With Increased Stopband and One-Sided Selectivity</title><title>IEEE microwave and wireless technology letters (Print)</title><addtitle>LMWT</addtitle><description><![CDATA[The letter proposes two design methods to increase the stopband and one-sided selectivity of combline bandpass filters (BPF) with mixed couplings between adjacent resonators. One method allows us to expand the stopband of a combline BPF. It is based on the location patterns of special points along the length of <inline-formula> <tex-math notation="LaTeX">\boldsymbol{\lambda}</tex-math> </inline-formula>/4 resonator and the elimination of a number of periodically located resonant frequencies using them. This method is applicable to combline BPFs with simple and mixed couplings. The second method refers to BPF with mixed coupling between adjacent resonators that contains magnetic and electrical components <inline-formula> <tex-math notation="LaTeX">\acute {K}_{i,i+ 1} </tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">K_{{m}i,i_+ 1}+ \, K_{e i,i+ 1}</tex-math> </inline-formula> and generates a transmission zero <inline-formula> <tex-math notation="LaTeX">f_{z i,i+1}</tex-math> </inline-formula> (TZ), leading to increased selectivity. This method uses the representation of mixed coupling by admittance inverter ( Ĵ inverter) and consists of two stages. At the first stage, the absolute values <inline-formula> <tex-math notation="LaTeX">\vert\acute {K}_{i,i+ 1}\vert</tex-math> </inline-formula>, are determined. In this case, <inline-formula> <tex-math notation="LaTeX">g</tex-math> </inline-formula>-parameters of the low-frequency prototype are used. At the second stage, the components <inline-formula> <tex-math notation="LaTeX">K_{m i,i+ 1}</tex-math> </inline-formula> and <inline-formula> <tex-math notation="LaTeX">K_{e i,i+ 1}</tex-math> </inline-formula> are determined by using the <inline-formula> <tex-math notation="LaTeX">f_{z i,i + 1}</tex-math> </inline-formula> position. The method is applicable to <inline-formula> <tex-math notation="LaTeX">N</tex-math> </inline-formula>-order BPF. The experimental results are presented.]]></description><subject>Admittance</subject><subject>Admittance inverter</subject><subject>Band-pass filters</subject><subject>bandpass filter (BPF)</subject><subject>Couplings</subject><subject>frequency responses</subject><subject>Inductance</subject><subject>Inverters</subject><subject>Magnetic resonance</subject><subject>mixed coupling</subject><subject>Resonators</subject><subject>stopband</subject><subject>transmission zero (TZ)</subject><issn>2771-957X</issn><issn>2771-9588</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLw0AQhRdRsNT-AMFD_kDiziTZ3Rw1WFuI9NBKvYXdZBZX0qTsBqH_XkOLeBje8HhvGD7G7oEnALx4rN72uwQ5YpIiAoriis1QSoiLXKnrv11-3LJFCF-ccywECshn7LkcDqZzPUVL143kQ7R342e07htPOlAbbcfhaHTfRtNseoq3rp1s6qgZ3bcbT3fsxuou0OKic_a-fNmVq7javK7LpypuUIgxTkFI2WpprFa5MJBpjdMfAi0nBalAZYmkBlBFYSGzjYbcgJa2taDRpHMG57uNH0LwZOujdwftTzXweuJQTxzqiUN94fDbeTh3HBH9y3OeKZmmPzmnWVs</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Zakharov, Alexander</creator><creator>Rozenko, Sergii</creator><creator>Litvintsev, Sergii</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6171-0036</orcidid><orcidid>https://orcid.org/0000-0002-3525-7127</orcidid><orcidid>https://orcid.org/0000-0002-1222-1623</orcidid></search><sort><creationdate>20230401</creationdate><title>Combline Filters With Increased Stopband and One-Sided Selectivity</title><author>Zakharov, Alexander ; Rozenko, Sergii ; Litvintsev, Sergii</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-31677da7bfa856b14aa2029662f0e813628fee7a11899f14fca15b1a7fdf1a2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Admittance</topic><topic>Admittance inverter</topic><topic>Band-pass filters</topic><topic>bandpass filter (BPF)</topic><topic>Couplings</topic><topic>frequency responses</topic><topic>Inductance</topic><topic>Inverters</topic><topic>Magnetic resonance</topic><topic>mixed coupling</topic><topic>Resonators</topic><topic>stopband</topic><topic>transmission zero (TZ)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakharov, Alexander</creatorcontrib><creatorcontrib>Rozenko, Sergii</creatorcontrib><creatorcontrib>Litvintsev, Sergii</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE microwave and wireless technology letters (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zakharov, Alexander</au><au>Rozenko, Sergii</au><au>Litvintsev, Sergii</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combline Filters With Increased Stopband and One-Sided Selectivity</atitle><jtitle>IEEE microwave and wireless technology letters (Print)</jtitle><stitle>LMWT</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>33</volume><issue>4</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2771-957X</issn><eissn>2771-9588</eissn><coden>IMWTAZ</coden><abstract><![CDATA[The letter proposes two design methods to increase the stopband and one-sided selectivity of combline bandpass filters (BPF) with mixed couplings between adjacent resonators. One method allows us to expand the stopband of a combline BPF. It is based on the location patterns of special points along the length of <inline-formula> <tex-math notation="LaTeX">\boldsymbol{\lambda}</tex-math> </inline-formula>/4 resonator and the elimination of a number of periodically located resonant frequencies using them. This method is applicable to combline BPFs with simple and mixed couplings. The second method refers to BPF with mixed coupling between adjacent resonators that contains magnetic and electrical components <inline-formula> <tex-math notation="LaTeX">\acute {K}_{i,i+ 1} </tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">K_{{m}i,i_+ 1}+ \, K_{e i,i+ 1}</tex-math> </inline-formula> and generates a transmission zero <inline-formula> <tex-math notation="LaTeX">f_{z i,i+1}</tex-math> </inline-formula> (TZ), leading to increased selectivity. This method uses the representation of mixed coupling by admittance inverter ( Ĵ inverter) and consists of two stages. At the first stage, the absolute values <inline-formula> <tex-math notation="LaTeX">\vert\acute {K}_{i,i+ 1}\vert</tex-math> </inline-formula>, are determined. In this case, <inline-formula> <tex-math notation="LaTeX">g</tex-math> </inline-formula>-parameters of the low-frequency prototype are used. At the second stage, the components <inline-formula> <tex-math notation="LaTeX">K_{m i,i+ 1}</tex-math> </inline-formula> and <inline-formula> <tex-math notation="LaTeX">K_{e i,i+ 1}</tex-math> </inline-formula> are determined by using the <inline-formula> <tex-math notation="LaTeX">f_{z i,i + 1}</tex-math> </inline-formula> position. The method is applicable to <inline-formula> <tex-math notation="LaTeX">N</tex-math> </inline-formula>-order BPF. The experimental results are presented.]]></abstract><pub>IEEE</pub><doi>10.1109/LMWT.2022.3221269</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6171-0036</orcidid><orcidid>https://orcid.org/0000-0002-3525-7127</orcidid><orcidid>https://orcid.org/0000-0002-1222-1623</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2771-957X |
ispartof | IEEE microwave and wireless technology letters (Print), 2023-04, Vol.33 (4), p.1-4 |
issn | 2771-957X 2771-9588 |
language | eng |
recordid | cdi_ieee_primary_10004873 |
source | IEEE Electronic Library (IEL) |
subjects | Admittance Admittance inverter Band-pass filters bandpass filter (BPF) Couplings frequency responses Inductance Inverters Magnetic resonance mixed coupling Resonators stopband transmission zero (TZ) |
title | Combline Filters With Increased Stopband and One-Sided Selectivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combline%20Filters%20With%20Increased%20Stopband%20and%20One-Sided%20Selectivity&rft.jtitle=IEEE%20microwave%20and%20wireless%20technology%20letters%20(Print)&rft.au=Zakharov,%20Alexander&rft.date=2023-04-01&rft.volume=33&rft.issue=4&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2771-957X&rft.eissn=2771-9588&rft.coden=IMWTAZ&rft_id=info:doi/10.1109/LMWT.2022.3221269&rft_dat=%3Ccrossref_RIE%3E10_1109_LMWT_2022_3221269%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10004873&rfr_iscdi=true |