Combline Filters With Increased Stopband and One-Sided Selectivity

The letter proposes two design methods to increase the stopband and one-sided selectivity of combline bandpass filters (BPF) with mixed couplings between adjacent resonators. One method allows us to expand the stopband of a combline BPF. It is based on the location patterns of special points along t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE microwave and wireless technology letters (Print) 2023-04, Vol.33 (4), p.1-4
Hauptverfasser: Zakharov, Alexander, Rozenko, Sergii, Litvintsev, Sergii
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 4
container_start_page 1
container_title IEEE microwave and wireless technology letters (Print)
container_volume 33
creator Zakharov, Alexander
Rozenko, Sergii
Litvintsev, Sergii
description The letter proposes two design methods to increase the stopband and one-sided selectivity of combline bandpass filters (BPF) with mixed couplings between adjacent resonators. One method allows us to expand the stopband of a combline BPF. It is based on the location patterns of special points along the length of \boldsymbol{\lambda} /4 resonator and the elimination of a number of periodically located resonant frequencies using them. This method is applicable to combline BPFs with simple and mixed couplings. The second method refers to BPF with mixed coupling between adjacent resonators that contains magnetic and electrical components \acute {K}_{i,i+ 1} = K_{{m}i,i_+ 1}+ \, K_{e i,i+ 1} and generates a transmission zero f_{z i,i+1} (TZ), leading to increased selectivity. This method uses the representation of mixed coupling by admittance inverter ( Ĵ inverter) and consists of two stages. At the first stage, the absolute values \vert\acute {K}_{i,i+ 1}\vert , are determined. In this case, g -parameters of the low-frequency prototype are used. At the second stage, the components K_{m i,i+ 1} and K_{e i,i+ 1} are determined by using the f_{z i,i + 1} position. The method is applicable to N -order BPF. The experimental results are presented.
doi_str_mv 10.1109/LMWT.2022.3221269
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10004873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10004873</ieee_id><sourcerecordid>10_1109_LMWT_2022_3221269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-31677da7bfa856b14aa2029662f0e813628fee7a11899f14fca15b1a7fdf1a2b3</originalsourceid><addsrcrecordid>eNpNkEFLw0AQhRdRsNT-AMFD_kDiziTZ3Rw1WFuI9NBKvYXdZBZX0qTsBqH_XkOLeBje8HhvGD7G7oEnALx4rN72uwQ5YpIiAoriis1QSoiLXKnrv11-3LJFCF-ccywECshn7LkcDqZzPUVL143kQ7R342e07htPOlAbbcfhaHTfRtNseoq3rp1s6qgZ3bcbT3fsxuou0OKic_a-fNmVq7javK7LpypuUIgxTkFI2WpprFa5MJBpjdMfAi0nBalAZYmkBlBFYSGzjYbcgJa2taDRpHMG57uNH0LwZOujdwftTzXweuJQTxzqiUN94fDbeTh3HBH9y3OeKZmmPzmnWVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combline Filters With Increased Stopband and One-Sided Selectivity</title><source>IEEE Electronic Library (IEL)</source><creator>Zakharov, Alexander ; Rozenko, Sergii ; Litvintsev, Sergii</creator><creatorcontrib>Zakharov, Alexander ; Rozenko, Sergii ; Litvintsev, Sergii</creatorcontrib><description><![CDATA[The letter proposes two design methods to increase the stopband and one-sided selectivity of combline bandpass filters (BPF) with mixed couplings between adjacent resonators. One method allows us to expand the stopband of a combline BPF. It is based on the location patterns of special points along the length of <inline-formula> <tex-math notation="LaTeX">\boldsymbol{\lambda}</tex-math> </inline-formula>/4 resonator and the elimination of a number of periodically located resonant frequencies using them. This method is applicable to combline BPFs with simple and mixed couplings. The second method refers to BPF with mixed coupling between adjacent resonators that contains magnetic and electrical components <inline-formula> <tex-math notation="LaTeX">\acute {K}_{i,i+ 1} </tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">K_{{m}i,i_+ 1}+ \, K_{e i,i+ 1}</tex-math> </inline-formula> and generates a transmission zero <inline-formula> <tex-math notation="LaTeX">f_{z i,i+1}</tex-math> </inline-formula> (TZ), leading to increased selectivity. This method uses the representation of mixed coupling by admittance inverter ( Ĵ inverter) and consists of two stages. At the first stage, the absolute values <inline-formula> <tex-math notation="LaTeX">\vert\acute {K}_{i,i+ 1}\vert</tex-math> </inline-formula>, are determined. In this case, <inline-formula> <tex-math notation="LaTeX">g</tex-math> </inline-formula>-parameters of the low-frequency prototype are used. At the second stage, the components <inline-formula> <tex-math notation="LaTeX">K_{m i,i+ 1}</tex-math> </inline-formula> and <inline-formula> <tex-math notation="LaTeX">K_{e i,i+ 1}</tex-math> </inline-formula> are determined by using the <inline-formula> <tex-math notation="LaTeX">f_{z i,i + 1}</tex-math> </inline-formula> position. The method is applicable to <inline-formula> <tex-math notation="LaTeX">N</tex-math> </inline-formula>-order BPF. The experimental results are presented.]]></description><identifier>ISSN: 2771-957X</identifier><identifier>EISSN: 2771-9588</identifier><identifier>DOI: 10.1109/LMWT.2022.3221269</identifier><identifier>CODEN: IMWTAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Admittance ; Admittance inverter ; Band-pass filters ; bandpass filter (BPF) ; Couplings ; frequency responses ; Inductance ; Inverters ; Magnetic resonance ; mixed coupling ; Resonators ; stopband ; transmission zero (TZ)</subject><ispartof>IEEE microwave and wireless technology letters (Print), 2023-04, Vol.33 (4), p.1-4</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-31677da7bfa856b14aa2029662f0e813628fee7a11899f14fca15b1a7fdf1a2b3</citedby><cites>FETCH-LOGICAL-c266t-31677da7bfa856b14aa2029662f0e813628fee7a11899f14fca15b1a7fdf1a2b3</cites><orcidid>0000-0002-6171-0036 ; 0000-0002-3525-7127 ; 0000-0002-1222-1623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10004873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10004873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zakharov, Alexander</creatorcontrib><creatorcontrib>Rozenko, Sergii</creatorcontrib><creatorcontrib>Litvintsev, Sergii</creatorcontrib><title>Combline Filters With Increased Stopband and One-Sided Selectivity</title><title>IEEE microwave and wireless technology letters (Print)</title><addtitle>LMWT</addtitle><description><![CDATA[The letter proposes two design methods to increase the stopband and one-sided selectivity of combline bandpass filters (BPF) with mixed couplings between adjacent resonators. One method allows us to expand the stopband of a combline BPF. It is based on the location patterns of special points along the length of <inline-formula> <tex-math notation="LaTeX">\boldsymbol{\lambda}</tex-math> </inline-formula>/4 resonator and the elimination of a number of periodically located resonant frequencies using them. This method is applicable to combline BPFs with simple and mixed couplings. The second method refers to BPF with mixed coupling between adjacent resonators that contains magnetic and electrical components <inline-formula> <tex-math notation="LaTeX">\acute {K}_{i,i+ 1} </tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">K_{{m}i,i_+ 1}+ \, K_{e i,i+ 1}</tex-math> </inline-formula> and generates a transmission zero <inline-formula> <tex-math notation="LaTeX">f_{z i,i+1}</tex-math> </inline-formula> (TZ), leading to increased selectivity. This method uses the representation of mixed coupling by admittance inverter ( Ĵ inverter) and consists of two stages. At the first stage, the absolute values <inline-formula> <tex-math notation="LaTeX">\vert\acute {K}_{i,i+ 1}\vert</tex-math> </inline-formula>, are determined. In this case, <inline-formula> <tex-math notation="LaTeX">g</tex-math> </inline-formula>-parameters of the low-frequency prototype are used. At the second stage, the components <inline-formula> <tex-math notation="LaTeX">K_{m i,i+ 1}</tex-math> </inline-formula> and <inline-formula> <tex-math notation="LaTeX">K_{e i,i+ 1}</tex-math> </inline-formula> are determined by using the <inline-formula> <tex-math notation="LaTeX">f_{z i,i + 1}</tex-math> </inline-formula> position. The method is applicable to <inline-formula> <tex-math notation="LaTeX">N</tex-math> </inline-formula>-order BPF. The experimental results are presented.]]></description><subject>Admittance</subject><subject>Admittance inverter</subject><subject>Band-pass filters</subject><subject>bandpass filter (BPF)</subject><subject>Couplings</subject><subject>frequency responses</subject><subject>Inductance</subject><subject>Inverters</subject><subject>Magnetic resonance</subject><subject>mixed coupling</subject><subject>Resonators</subject><subject>stopband</subject><subject>transmission zero (TZ)</subject><issn>2771-957X</issn><issn>2771-9588</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLw0AQhRdRsNT-AMFD_kDiziTZ3Rw1WFuI9NBKvYXdZBZX0qTsBqH_XkOLeBje8HhvGD7G7oEnALx4rN72uwQ5YpIiAoriis1QSoiLXKnrv11-3LJFCF-ccywECshn7LkcDqZzPUVL143kQ7R342e07htPOlAbbcfhaHTfRtNseoq3rp1s6qgZ3bcbT3fsxuou0OKic_a-fNmVq7javK7LpypuUIgxTkFI2WpprFa5MJBpjdMfAi0nBalAZYmkBlBFYSGzjYbcgJa2taDRpHMG57uNH0LwZOujdwftTzXweuJQTxzqiUN94fDbeTh3HBH9y3OeKZmmPzmnWVs</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Zakharov, Alexander</creator><creator>Rozenko, Sergii</creator><creator>Litvintsev, Sergii</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6171-0036</orcidid><orcidid>https://orcid.org/0000-0002-3525-7127</orcidid><orcidid>https://orcid.org/0000-0002-1222-1623</orcidid></search><sort><creationdate>20230401</creationdate><title>Combline Filters With Increased Stopband and One-Sided Selectivity</title><author>Zakharov, Alexander ; Rozenko, Sergii ; Litvintsev, Sergii</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-31677da7bfa856b14aa2029662f0e813628fee7a11899f14fca15b1a7fdf1a2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Admittance</topic><topic>Admittance inverter</topic><topic>Band-pass filters</topic><topic>bandpass filter (BPF)</topic><topic>Couplings</topic><topic>frequency responses</topic><topic>Inductance</topic><topic>Inverters</topic><topic>Magnetic resonance</topic><topic>mixed coupling</topic><topic>Resonators</topic><topic>stopband</topic><topic>transmission zero (TZ)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakharov, Alexander</creatorcontrib><creatorcontrib>Rozenko, Sergii</creatorcontrib><creatorcontrib>Litvintsev, Sergii</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE microwave and wireless technology letters (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zakharov, Alexander</au><au>Rozenko, Sergii</au><au>Litvintsev, Sergii</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combline Filters With Increased Stopband and One-Sided Selectivity</atitle><jtitle>IEEE microwave and wireless technology letters (Print)</jtitle><stitle>LMWT</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>33</volume><issue>4</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2771-957X</issn><eissn>2771-9588</eissn><coden>IMWTAZ</coden><abstract><![CDATA[The letter proposes two design methods to increase the stopband and one-sided selectivity of combline bandpass filters (BPF) with mixed couplings between adjacent resonators. One method allows us to expand the stopband of a combline BPF. It is based on the location patterns of special points along the length of <inline-formula> <tex-math notation="LaTeX">\boldsymbol{\lambda}</tex-math> </inline-formula>/4 resonator and the elimination of a number of periodically located resonant frequencies using them. This method is applicable to combline BPFs with simple and mixed couplings. The second method refers to BPF with mixed coupling between adjacent resonators that contains magnetic and electrical components <inline-formula> <tex-math notation="LaTeX">\acute {K}_{i,i+ 1} </tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">K_{{m}i,i_+ 1}+ \, K_{e i,i+ 1}</tex-math> </inline-formula> and generates a transmission zero <inline-formula> <tex-math notation="LaTeX">f_{z i,i+1}</tex-math> </inline-formula> (TZ), leading to increased selectivity. This method uses the representation of mixed coupling by admittance inverter ( Ĵ inverter) and consists of two stages. At the first stage, the absolute values <inline-formula> <tex-math notation="LaTeX">\vert\acute {K}_{i,i+ 1}\vert</tex-math> </inline-formula>, are determined. In this case, <inline-formula> <tex-math notation="LaTeX">g</tex-math> </inline-formula>-parameters of the low-frequency prototype are used. At the second stage, the components <inline-formula> <tex-math notation="LaTeX">K_{m i,i+ 1}</tex-math> </inline-formula> and <inline-formula> <tex-math notation="LaTeX">K_{e i,i+ 1}</tex-math> </inline-formula> are determined by using the <inline-formula> <tex-math notation="LaTeX">f_{z i,i + 1}</tex-math> </inline-formula> position. The method is applicable to <inline-formula> <tex-math notation="LaTeX">N</tex-math> </inline-formula>-order BPF. The experimental results are presented.]]></abstract><pub>IEEE</pub><doi>10.1109/LMWT.2022.3221269</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6171-0036</orcidid><orcidid>https://orcid.org/0000-0002-3525-7127</orcidid><orcidid>https://orcid.org/0000-0002-1222-1623</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2771-957X
ispartof IEEE microwave and wireless technology letters (Print), 2023-04, Vol.33 (4), p.1-4
issn 2771-957X
2771-9588
language eng
recordid cdi_ieee_primary_10004873
source IEEE Electronic Library (IEL)
subjects Admittance
Admittance inverter
Band-pass filters
bandpass filter (BPF)
Couplings
frequency responses
Inductance
Inverters
Magnetic resonance
mixed coupling
Resonators
stopband
transmission zero (TZ)
title Combline Filters With Increased Stopband and One-Sided Selectivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combline%20Filters%20With%20Increased%20Stopband%20and%20One-Sided%20Selectivity&rft.jtitle=IEEE%20microwave%20and%20wireless%20technology%20letters%20(Print)&rft.au=Zakharov,%20Alexander&rft.date=2023-04-01&rft.volume=33&rft.issue=4&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2771-957X&rft.eissn=2771-9588&rft.coden=IMWTAZ&rft_id=info:doi/10.1109/LMWT.2022.3221269&rft_dat=%3Ccrossref_RIE%3E10_1109_LMWT_2022_3221269%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10004873&rfr_iscdi=true