Progressive Motion Boosting for Video Frame Interpolation
Video frame interpolation has made great progress in estimating advanced optical flow and synthesizing in-between frames sequentially. However, frame interpolation involving various resolutions and motions remains challenging due to limited or fixed pre-trained networks. Inspired by the success of t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2023-01, Vol.25, p.1-14 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on multimedia |
container_volume | 25 |
creator | Xiao, Jing Xu, Kangmin Hu, Mengshun Liao, Liang Wang, Zheng Lin, Chia-Wen Wang, Mi Satoh, Shin'ichi |
description | Video frame interpolation has made great progress in estimating advanced optical flow and synthesizing in-between frames sequentially. However, frame interpolation involving various resolutions and motions remains challenging due to limited or fixed pre-trained networks. Inspired by the success of the coarse-to-fine scheme for video frame interpolation, i.e. , gradually interpolating frames of different resolutions, we propose a progressive boosting network (ProBoost-Net) based on a multi-scale framework to achieve flexible recurrent scales and then gradually optimize optical flow estimation and frame interpolation. Specifically, we designed a dense motion boosting (DMB) module to transfer features close to real motion to the decoded features from the later scales, which provides complementary information to refine the motion further. Furthermore, to ensure the accuracy of the estimated motion features at each scale, we propose a motion adaptive fusion (MAF) module that adaptively deals with motions with different receptive fields according to the motion conditions. Thanks to the framework's flexible recurrent scales, we can customize the number of scales and make trade-offs between computation and quality depending on the application scenario. Extensive experiments with various datasets demonstrated the superiority of our proposed method over state-of-the-art approaches in various scenarios. |
doi_str_mv | 10.1109/TMM.2022.3233310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10003662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10003662</ieee_id><sourcerecordid>2901468405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-6d7bae2e1ae6060f162c7b8e0a1798c52bf05ed3ea532598c1abda7addfe5f673</originalsourceid><addsrcrecordid>eNpNkEFLAzEQRoMoWKt3Dx4WPG-dTJqkOWqxKrTooXoN2d1J2dJuarIV_PemtAdPMwzvm2EeY7ccRpyDeVguFiMExJFAIQSHMzbgZsxLAK3Pcy8RSoMcLtlVSmsAPpagB8x8xLCKlFL7Q8Ui9G3oiqcQUt92q8KHWHy1DYViFt2Wireup7gLG3fArtmFd5tEN6c6ZJ-z5-X0tZy_v7xNH-dljQb7UjW6coTEHSlQ4LnCWlcTAse1mdQSKw-SGkFOCpR5wl3VOO2axpP0Soshuz_u3cXwvafU23XYxy6ftGjyG2oyBpkpOFJ1DClF8nYX262Lv5aDPQiyWZA9CLInQTlyd4y0RPQPBxBKofgDj9Jhmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901468405</pqid></control><display><type>article</type><title>Progressive Motion Boosting for Video Frame Interpolation</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Jing ; Xu, Kangmin ; Hu, Mengshun ; Liao, Liang ; Wang, Zheng ; Lin, Chia-Wen ; Wang, Mi ; Satoh, Shin'ichi</creator><creatorcontrib>Xiao, Jing ; Xu, Kangmin ; Hu, Mengshun ; Liao, Liang ; Wang, Zheng ; Lin, Chia-Wen ; Wang, Mi ; Satoh, Shin'ichi</creatorcontrib><description>Video frame interpolation has made great progress in estimating advanced optical flow and synthesizing in-between frames sequentially. However, frame interpolation involving various resolutions and motions remains challenging due to limited or fixed pre-trained networks. Inspired by the success of the coarse-to-fine scheme for video frame interpolation, i.e. , gradually interpolating frames of different resolutions, we propose a progressive boosting network (ProBoost-Net) based on a multi-scale framework to achieve flexible recurrent scales and then gradually optimize optical flow estimation and frame interpolation. Specifically, we designed a dense motion boosting (DMB) module to transfer features close to real motion to the decoded features from the later scales, which provides complementary information to refine the motion further. Furthermore, to ensure the accuracy of the estimated motion features at each scale, we propose a motion adaptive fusion (MAF) module that adaptively deals with motions with different receptive fields according to the motion conditions. Thanks to the framework's flexible recurrent scales, we can customize the number of scales and make trade-offs between computation and quality depending on the application scenario. Extensive experiments with various datasets demonstrated the superiority of our proposed method over state-of-the-art approaches in various scenarios.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2022.3233310</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Boosting ; Decoding ; Estimation ; Feature extraction ; Frame interpolation ; Frames (data processing) ; Interpolation ; Modules ; Motion estimation ; Multi-scale framework ; Optical flow ; Optical flow (image analysis) ; Progressive boosting</subject><ispartof>IEEE transactions on multimedia, 2023-01, Vol.25, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-6d7bae2e1ae6060f162c7b8e0a1798c52bf05ed3ea532598c1abda7addfe5f673</citedby><cites>FETCH-LOGICAL-c292t-6d7bae2e1ae6060f162c7b8e0a1798c52bf05ed3ea532598c1abda7addfe5f673</cites><orcidid>0000-0001-9794-0119 ; 0000-0003-3846-9157 ; 0000-0002-2238-2420 ; 0000-0002-9097-2318 ; 0000-0003-2799-5987 ; 0000-0001-6995-6447 ; 0000-0002-9439-0550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10003662$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10003662$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Jing</creatorcontrib><creatorcontrib>Xu, Kangmin</creatorcontrib><creatorcontrib>Hu, Mengshun</creatorcontrib><creatorcontrib>Liao, Liang</creatorcontrib><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>Lin, Chia-Wen</creatorcontrib><creatorcontrib>Wang, Mi</creatorcontrib><creatorcontrib>Satoh, Shin'ichi</creatorcontrib><title>Progressive Motion Boosting for Video Frame Interpolation</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Video frame interpolation has made great progress in estimating advanced optical flow and synthesizing in-between frames sequentially. However, frame interpolation involving various resolutions and motions remains challenging due to limited or fixed pre-trained networks. Inspired by the success of the coarse-to-fine scheme for video frame interpolation, i.e. , gradually interpolating frames of different resolutions, we propose a progressive boosting network (ProBoost-Net) based on a multi-scale framework to achieve flexible recurrent scales and then gradually optimize optical flow estimation and frame interpolation. Specifically, we designed a dense motion boosting (DMB) module to transfer features close to real motion to the decoded features from the later scales, which provides complementary information to refine the motion further. Furthermore, to ensure the accuracy of the estimated motion features at each scale, we propose a motion adaptive fusion (MAF) module that adaptively deals with motions with different receptive fields according to the motion conditions. Thanks to the framework's flexible recurrent scales, we can customize the number of scales and make trade-offs between computation and quality depending on the application scenario. Extensive experiments with various datasets demonstrated the superiority of our proposed method over state-of-the-art approaches in various scenarios.</description><subject>Boosting</subject><subject>Decoding</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Frame interpolation</subject><subject>Frames (data processing)</subject><subject>Interpolation</subject><subject>Modules</subject><subject>Motion estimation</subject><subject>Multi-scale framework</subject><subject>Optical flow</subject><subject>Optical flow (image analysis)</subject><subject>Progressive boosting</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEQRoMoWKt3Dx4WPG-dTJqkOWqxKrTooXoN2d1J2dJuarIV_PemtAdPMwzvm2EeY7ccRpyDeVguFiMExJFAIQSHMzbgZsxLAK3Pcy8RSoMcLtlVSmsAPpagB8x8xLCKlFL7Q8Ui9G3oiqcQUt92q8KHWHy1DYViFt2Wireup7gLG3fArtmFd5tEN6c6ZJ-z5-X0tZy_v7xNH-dljQb7UjW6coTEHSlQ4LnCWlcTAse1mdQSKw-SGkFOCpR5wl3VOO2axpP0Soshuz_u3cXwvafU23XYxy6ftGjyG2oyBpkpOFJ1DClF8nYX262Lv5aDPQiyWZA9CLInQTlyd4y0RPQPBxBKofgDj9Jhmw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Xiao, Jing</creator><creator>Xu, Kangmin</creator><creator>Hu, Mengshun</creator><creator>Liao, Liang</creator><creator>Wang, Zheng</creator><creator>Lin, Chia-Wen</creator><creator>Wang, Mi</creator><creator>Satoh, Shin'ichi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9794-0119</orcidid><orcidid>https://orcid.org/0000-0003-3846-9157</orcidid><orcidid>https://orcid.org/0000-0002-2238-2420</orcidid><orcidid>https://orcid.org/0000-0002-9097-2318</orcidid><orcidid>https://orcid.org/0000-0003-2799-5987</orcidid><orcidid>https://orcid.org/0000-0001-6995-6447</orcidid><orcidid>https://orcid.org/0000-0002-9439-0550</orcidid></search><sort><creationdate>20230101</creationdate><title>Progressive Motion Boosting for Video Frame Interpolation</title><author>Xiao, Jing ; Xu, Kangmin ; Hu, Mengshun ; Liao, Liang ; Wang, Zheng ; Lin, Chia-Wen ; Wang, Mi ; Satoh, Shin'ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-6d7bae2e1ae6060f162c7b8e0a1798c52bf05ed3ea532598c1abda7addfe5f673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boosting</topic><topic>Decoding</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Frame interpolation</topic><topic>Frames (data processing)</topic><topic>Interpolation</topic><topic>Modules</topic><topic>Motion estimation</topic><topic>Multi-scale framework</topic><topic>Optical flow</topic><topic>Optical flow (image analysis)</topic><topic>Progressive boosting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Jing</creatorcontrib><creatorcontrib>Xu, Kangmin</creatorcontrib><creatorcontrib>Hu, Mengshun</creatorcontrib><creatorcontrib>Liao, Liang</creatorcontrib><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>Lin, Chia-Wen</creatorcontrib><creatorcontrib>Wang, Mi</creatorcontrib><creatorcontrib>Satoh, Shin'ichi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Jing</au><au>Xu, Kangmin</au><au>Hu, Mengshun</au><au>Liao, Liang</au><au>Wang, Zheng</au><au>Lin, Chia-Wen</au><au>Wang, Mi</au><au>Satoh, Shin'ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progressive Motion Boosting for Video Frame Interpolation</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>25</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Video frame interpolation has made great progress in estimating advanced optical flow and synthesizing in-between frames sequentially. However, frame interpolation involving various resolutions and motions remains challenging due to limited or fixed pre-trained networks. Inspired by the success of the coarse-to-fine scheme for video frame interpolation, i.e. , gradually interpolating frames of different resolutions, we propose a progressive boosting network (ProBoost-Net) based on a multi-scale framework to achieve flexible recurrent scales and then gradually optimize optical flow estimation and frame interpolation. Specifically, we designed a dense motion boosting (DMB) module to transfer features close to real motion to the decoded features from the later scales, which provides complementary information to refine the motion further. Furthermore, to ensure the accuracy of the estimated motion features at each scale, we propose a motion adaptive fusion (MAF) module that adaptively deals with motions with different receptive fields according to the motion conditions. Thanks to the framework's flexible recurrent scales, we can customize the number of scales and make trade-offs between computation and quality depending on the application scenario. Extensive experiments with various datasets demonstrated the superiority of our proposed method over state-of-the-art approaches in various scenarios.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2022.3233310</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9794-0119</orcidid><orcidid>https://orcid.org/0000-0003-3846-9157</orcidid><orcidid>https://orcid.org/0000-0002-2238-2420</orcidid><orcidid>https://orcid.org/0000-0002-9097-2318</orcidid><orcidid>https://orcid.org/0000-0003-2799-5987</orcidid><orcidid>https://orcid.org/0000-0001-6995-6447</orcidid><orcidid>https://orcid.org/0000-0002-9439-0550</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2023-01, Vol.25, p.1-14 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_ieee_primary_10003662 |
source | IEEE Electronic Library (IEL) |
subjects | Boosting Decoding Estimation Feature extraction Frame interpolation Frames (data processing) Interpolation Modules Motion estimation Multi-scale framework Optical flow Optical flow (image analysis) Progressive boosting |
title | Progressive Motion Boosting for Video Frame Interpolation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progressive%20Motion%20Boosting%20for%20Video%20Frame%20Interpolation&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Xiao,%20Jing&rft.date=2023-01-01&rft.volume=25&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2022.3233310&rft_dat=%3Cproquest_RIE%3E2901468405%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901468405&rft_id=info:pmid/&rft_ieee_id=10003662&rfr_iscdi=true |