A Robust Coverless Image Steganography Based on an End-to-End Hash Generation Model
Recently, coverless steganography algorithms have attracted increased research attention due to their ability to completely resist steganalysis algorithms. However, the existing algorithms do not attain the same robust balance against geometric and non-geometric attacks. In addition, most of the exi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2023-07, Vol.33 (7), p.3542-3558 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3558 |
---|---|
container_issue | 7 |
container_start_page | 3542 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 33 |
creator | Meng, Laijin Jiang, Xinghao Zhang, Zhenzhen Li, Zhaohong Sun, Tanfeng |
description | Recently, coverless steganography algorithms have attracted increased research attention due to their ability to completely resist steganalysis algorithms. However, the existing algorithms do not attain the same robust balance against geometric and non-geometric attacks. In addition, most of the existing methods need to transmit some auxiliary information along with the stego-images, which increases the cost of the hidden information. In this paper, a robust coverless image steganography algorithm based on a hash generation model is proposed. Different from the existing methods, the hash sequences are generated by an end-to-end CNN model, where the input is the original images, and the output is the corresponding hash sequences. Therefore, no auxiliary information needs to be transmitted when hiding the secret information. Moreover, the attention mechanism and adversarial training are introduced to improve the robustness of the model. The loss function is redesigned to accommodate these operations. Finally, an index structure is built to enhance the mapping efficiency. The experimental results show that the proposed method possesses better robustness and security compared with the state-of-the-art coverless image steganography algorithms. |
doi_str_mv | 10.1109/TCSVT.2022.3232790 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10002351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10002351</ieee_id><sourcerecordid>2831521852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-57c2ab28bd89000b3ede5a1af8f78ad165c323cb0315f346a9f3a14b0c4828603</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEmPwBxCHSJw7HKdp0-OoxjZpCIkNrlXauvvQ1oykQ9q_J2McONmS38eWH8buBQyEgOxpkc8_FwMExIFEiWkGF6wnlNIRIqjL0IMSkUahrtmN9xsAEes47bH5kL_b8uA7nttvclvynk93Zkl83tHStHbpzH515M_GU81ty03LR20ddTYKhU-MX_ExteRMtw7TV1vT9pZdNWbr6e6v9tnHy2iRT6LZ23iaD2dRhVnSRSqt0JSoy1pnAFBKqkkZYRrdpNrUIlFV-KUqQQrVyDgxWSONiEuoYo06Adlnj-e9e2e_DuS7YmMPrg0nC9QBQqEVhhSeU5Wz3jtqir1b74w7FgKKk7ziV15xklf8yQvQwxlaE9E_AAClEvIHf0pp1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831521852</pqid></control><display><type>article</type><title>A Robust Coverless Image Steganography Based on an End-to-End Hash Generation Model</title><source>IEEE Electronic Library (IEL)</source><creator>Meng, Laijin ; Jiang, Xinghao ; Zhang, Zhenzhen ; Li, Zhaohong ; Sun, Tanfeng</creator><creatorcontrib>Meng, Laijin ; Jiang, Xinghao ; Zhang, Zhenzhen ; Li, Zhaohong ; Sun, Tanfeng</creatorcontrib><description>Recently, coverless steganography algorithms have attracted increased research attention due to their ability to completely resist steganalysis algorithms. However, the existing algorithms do not attain the same robust balance against geometric and non-geometric attacks. In addition, most of the existing methods need to transmit some auxiliary information along with the stego-images, which increases the cost of the hidden information. In this paper, a robust coverless image steganography algorithm based on a hash generation model is proposed. Different from the existing methods, the hash sequences are generated by an end-to-end CNN model, where the input is the original images, and the output is the corresponding hash sequences. Therefore, no auxiliary information needs to be transmitted when hiding the secret information. Moreover, the attention mechanism and adversarial training are introduced to improve the robustness of the model. The loss function is redesigned to accommodate these operations. Finally, an index structure is built to enhance the mapping efficiency. The experimental results show that the proposed method possesses better robustness and security compared with the state-of-the-art coverless image steganography algorithms.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2022.3232790</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; attention mechanism ; Coverless information hiding ; densenet ; end-to-end hash generation ; Feature extraction ; Image segmentation ; image steganography ; Indexes ; Receivers ; Resists ; Robustness ; Steganography</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2023-07, Vol.33 (7), p.3542-3558</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-57c2ab28bd89000b3ede5a1af8f78ad165c323cb0315f346a9f3a14b0c4828603</citedby><cites>FETCH-LOGICAL-c296t-57c2ab28bd89000b3ede5a1af8f78ad165c323cb0315f346a9f3a14b0c4828603</cites><orcidid>0000-0002-7694-6850 ; 0000-0002-3253-5136 ; 0000-0001-6463-7666 ; 0000-0002-9758-0579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10002351$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10002351$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Meng, Laijin</creatorcontrib><creatorcontrib>Jiang, Xinghao</creatorcontrib><creatorcontrib>Zhang, Zhenzhen</creatorcontrib><creatorcontrib>Li, Zhaohong</creatorcontrib><creatorcontrib>Sun, Tanfeng</creatorcontrib><title>A Robust Coverless Image Steganography Based on an End-to-End Hash Generation Model</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Recently, coverless steganography algorithms have attracted increased research attention due to their ability to completely resist steganalysis algorithms. However, the existing algorithms do not attain the same robust balance against geometric and non-geometric attacks. In addition, most of the existing methods need to transmit some auxiliary information along with the stego-images, which increases the cost of the hidden information. In this paper, a robust coverless image steganography algorithm based on a hash generation model is proposed. Different from the existing methods, the hash sequences are generated by an end-to-end CNN model, where the input is the original images, and the output is the corresponding hash sequences. Therefore, no auxiliary information needs to be transmitted when hiding the secret information. Moreover, the attention mechanism and adversarial training are introduced to improve the robustness of the model. The loss function is redesigned to accommodate these operations. Finally, an index structure is built to enhance the mapping efficiency. The experimental results show that the proposed method possesses better robustness and security compared with the state-of-the-art coverless image steganography algorithms.</description><subject>Algorithms</subject><subject>attention mechanism</subject><subject>Coverless information hiding</subject><subject>densenet</subject><subject>end-to-end hash generation</subject><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>image steganography</subject><subject>Indexes</subject><subject>Receivers</subject><subject>Resists</subject><subject>Robustness</subject><subject>Steganography</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwzAMhiMEEmPwBxCHSJw7HKdp0-OoxjZpCIkNrlXauvvQ1oykQ9q_J2McONmS38eWH8buBQyEgOxpkc8_FwMExIFEiWkGF6wnlNIRIqjL0IMSkUahrtmN9xsAEes47bH5kL_b8uA7nttvclvynk93Zkl83tHStHbpzH515M_GU81ty03LR20ddTYKhU-MX_ExteRMtw7TV1vT9pZdNWbr6e6v9tnHy2iRT6LZ23iaD2dRhVnSRSqt0JSoy1pnAFBKqkkZYRrdpNrUIlFV-KUqQQrVyDgxWSONiEuoYo06Adlnj-e9e2e_DuS7YmMPrg0nC9QBQqEVhhSeU5Wz3jtqir1b74w7FgKKk7ziV15xklf8yQvQwxlaE9E_AAClEvIHf0pp1A</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Meng, Laijin</creator><creator>Jiang, Xinghao</creator><creator>Zhang, Zhenzhen</creator><creator>Li, Zhaohong</creator><creator>Sun, Tanfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7694-6850</orcidid><orcidid>https://orcid.org/0000-0002-3253-5136</orcidid><orcidid>https://orcid.org/0000-0001-6463-7666</orcidid><orcidid>https://orcid.org/0000-0002-9758-0579</orcidid></search><sort><creationdate>20230701</creationdate><title>A Robust Coverless Image Steganography Based on an End-to-End Hash Generation Model</title><author>Meng, Laijin ; Jiang, Xinghao ; Zhang, Zhenzhen ; Li, Zhaohong ; Sun, Tanfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-57c2ab28bd89000b3ede5a1af8f78ad165c323cb0315f346a9f3a14b0c4828603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>attention mechanism</topic><topic>Coverless information hiding</topic><topic>densenet</topic><topic>end-to-end hash generation</topic><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>image steganography</topic><topic>Indexes</topic><topic>Receivers</topic><topic>Resists</topic><topic>Robustness</topic><topic>Steganography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Laijin</creatorcontrib><creatorcontrib>Jiang, Xinghao</creatorcontrib><creatorcontrib>Zhang, Zhenzhen</creatorcontrib><creatorcontrib>Li, Zhaohong</creatorcontrib><creatorcontrib>Sun, Tanfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meng, Laijin</au><au>Jiang, Xinghao</au><au>Zhang, Zhenzhen</au><au>Li, Zhaohong</au><au>Sun, Tanfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robust Coverless Image Steganography Based on an End-to-End Hash Generation Model</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>33</volume><issue>7</issue><spage>3542</spage><epage>3558</epage><pages>3542-3558</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Recently, coverless steganography algorithms have attracted increased research attention due to their ability to completely resist steganalysis algorithms. However, the existing algorithms do not attain the same robust balance against geometric and non-geometric attacks. In addition, most of the existing methods need to transmit some auxiliary information along with the stego-images, which increases the cost of the hidden information. In this paper, a robust coverless image steganography algorithm based on a hash generation model is proposed. Different from the existing methods, the hash sequences are generated by an end-to-end CNN model, where the input is the original images, and the output is the corresponding hash sequences. Therefore, no auxiliary information needs to be transmitted when hiding the secret information. Moreover, the attention mechanism and adversarial training are introduced to improve the robustness of the model. The loss function is redesigned to accommodate these operations. Finally, an index structure is built to enhance the mapping efficiency. The experimental results show that the proposed method possesses better robustness and security compared with the state-of-the-art coverless image steganography algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2022.3232790</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7694-6850</orcidid><orcidid>https://orcid.org/0000-0002-3253-5136</orcidid><orcidid>https://orcid.org/0000-0001-6463-7666</orcidid><orcidid>https://orcid.org/0000-0002-9758-0579</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2023-07, Vol.33 (7), p.3542-3558 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_ieee_primary_10002351 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms attention mechanism Coverless information hiding densenet end-to-end hash generation Feature extraction Image segmentation image steganography Indexes Receivers Resists Robustness Steganography |
title | A Robust Coverless Image Steganography Based on an End-to-End Hash Generation Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A53%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robust%20Coverless%20Image%20Steganography%20Based%20on%20an%20End-to-End%20Hash%20Generation%20Model&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Meng,%20Laijin&rft.date=2023-07-01&rft.volume=33&rft.issue=7&rft.spage=3542&rft.epage=3558&rft.pages=3542-3558&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2022.3232790&rft_dat=%3Cproquest_RIE%3E2831521852%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831521852&rft_id=info:pmid/&rft_ieee_id=10002351&rfr_iscdi=true |