Nonlinear self adjointness and exact solution of Fokas-Olver-Rosenau-Qiao (FORQ) equation

Based on Lie’s symmetry approach, conservation laws are constructed for Fokas-Olver-Rosenau-Qiao(FORQ) equation and exact solution is obtained. Nonlocal conservation theorem is used to carry out the analysis of conservation process. Nonlinear self adjointness concept is applied to FORQ equation, it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications Series A1 Mathematics & Statistics 2018-02, Vol.67 (2), p.317-326
Hauptverfasser: San,Sait, Akbulut,Arzu, Ünsal,Ömer, Taşcan Güney,Filiz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 326
container_issue 2
container_start_page 317
container_title Communications Series A1 Mathematics & Statistics
container_volume 67
creator San,Sait
Akbulut,Arzu
Ünsal,Ömer
Taşcan Güney,Filiz
description Based on Lie’s symmetry approach, conservation laws are constructed for Fokas-Olver-Rosenau-Qiao(FORQ) equation and exact solution is obtained. Nonlocal conservation theorem is used to carry out the analysis of conservation process. Nonlinear self adjointness concept is applied to FORQ equation, it is proved to be strict self adjoint. Characteristic equation and similarity variable help us find exact solution of FORQ equation. Compared with solutions found in previous papers, our solution is new and important, since it is not possible to find exact solution of FORQ equation quite easily.
doi_str_mv 10.1501/Commua1_0000000885
format Article
fullrecord <record><control><sourceid>idealonline</sourceid><recordid>TN_cdi_idealonline_journals_IDEAL_64016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>IDEAL_64016</sourcerecordid><originalsourceid>FETCH-LOGICAL-i117t-830b48a97550ac984bf7f4ac8ebd6d4f26986e9541776fe4530cf381f9fc0a213</originalsourceid><addsrcrecordid>eNotj7FOwzAURT2ARCn8AJM3YDD41XZij1VooFJE1AoGpuglsaWE1BZxgvj8gspd7nJ0jy4hN8AfQHF4zMLhMCNU_BSt1RlZgOCCKWPgglzG2HMuhJSwIB-vwQ-dtzjSaAdHse1D5ydvY6ToW2p_sJloDMM8dcHT4GgePjGycvi2I9uHaD3ObNdhoHd5ud_dU_s14x97Rc4dDtFe__eSvOebt-yFFeXzNlsXrANIJ6YFr6VGkyrFsTFa1i51Ehtt6zZppVslRifWKAlpmjgrleCNExqccQ3HFYgluT3tdq3F4fSm6sM8-l9rtX3arIsqkRwScQSAzlUV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonlinear self adjointness and exact solution of Fokas-Olver-Rosenau-Qiao (FORQ) equation</title><source>Alma/SFX Local Collection</source><creator>San,Sait ; Akbulut,Arzu ; Ünsal,Ömer ; Taşcan Güney,Filiz</creator><contributor>Bereketoğlu,Hüseyin</contributor><creatorcontrib>San,Sait ; Akbulut,Arzu ; Ünsal,Ömer ; Taşcan Güney,Filiz ; Bereketoğlu,Hüseyin</creatorcontrib><description>Based on Lie’s symmetry approach, conservation laws are constructed for Fokas-Olver-Rosenau-Qiao(FORQ) equation and exact solution is obtained. Nonlocal conservation theorem is used to carry out the analysis of conservation process. Nonlinear self adjointness concept is applied to FORQ equation, it is proved to be strict self adjoint. Characteristic equation and similarity variable help us find exact solution of FORQ equation. Compared with solutions found in previous papers, our solution is new and important, since it is not possible to find exact solution of FORQ equation quite easily.</description><identifier>ISSN: 1303-5991</identifier><identifier>DOI: 10.1501/Commua1_0000000885</identifier><language>eng</language><publisher>Ankara Üniversitesi Fen Fakültesi</publisher><subject>Matematik</subject><ispartof>Communications Series A1 Mathematics &amp; Statistics, 2018-02, Vol.67 (2), p.317-326</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Bereketoğlu,Hüseyin</contributor><creatorcontrib>San,Sait</creatorcontrib><creatorcontrib>Akbulut,Arzu</creatorcontrib><creatorcontrib>Ünsal,Ömer</creatorcontrib><creatorcontrib>Taşcan Güney,Filiz</creatorcontrib><title>Nonlinear self adjointness and exact solution of Fokas-Olver-Rosenau-Qiao (FORQ) equation</title><title>Communications Series A1 Mathematics &amp; Statistics</title><description>Based on Lie’s symmetry approach, conservation laws are constructed for Fokas-Olver-Rosenau-Qiao(FORQ) equation and exact solution is obtained. Nonlocal conservation theorem is used to carry out the analysis of conservation process. Nonlinear self adjointness concept is applied to FORQ equation, it is proved to be strict self adjoint. Characteristic equation and similarity variable help us find exact solution of FORQ equation. Compared with solutions found in previous papers, our solution is new and important, since it is not possible to find exact solution of FORQ equation quite easily.</description><subject>Matematik</subject><issn>1303-5991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotj7FOwzAURT2ARCn8AJM3YDD41XZij1VooFJE1AoGpuglsaWE1BZxgvj8gspd7nJ0jy4hN8AfQHF4zMLhMCNU_BSt1RlZgOCCKWPgglzG2HMuhJSwIB-vwQ-dtzjSaAdHse1D5ydvY6ToW2p_sJloDMM8dcHT4GgePjGycvi2I9uHaD3ObNdhoHd5ud_dU_s14x97Rc4dDtFe__eSvOebt-yFFeXzNlsXrANIJ6YFr6VGkyrFsTFa1i51Ehtt6zZppVslRifWKAlpmjgrleCNExqccQ3HFYgluT3tdq3F4fSm6sM8-l9rtX3arIsqkRwScQSAzlUV</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>San,Sait</creator><creator>Akbulut,Arzu</creator><creator>Ünsal,Ömer</creator><creator>Taşcan Güney,Filiz</creator><general>Ankara Üniversitesi Fen Fakültesi</general><scope>IEBAR</scope></search><sort><creationdate>201802</creationdate><title>Nonlinear self adjointness and exact solution of Fokas-Olver-Rosenau-Qiao (FORQ) equation</title><author>San,Sait ; Akbulut,Arzu ; Ünsal,Ömer ; Taşcan Güney,Filiz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i117t-830b48a97550ac984bf7f4ac8ebd6d4f26986e9541776fe4530cf381f9fc0a213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Matematik</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>San,Sait</creatorcontrib><creatorcontrib>Akbulut,Arzu</creatorcontrib><creatorcontrib>Ünsal,Ömer</creatorcontrib><creatorcontrib>Taşcan Güney,Filiz</creatorcontrib><collection>Idealonline online kütüphane - Journals</collection><jtitle>Communications Series A1 Mathematics &amp; Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>San,Sait</au><au>Akbulut,Arzu</au><au>Ünsal,Ömer</au><au>Taşcan Güney,Filiz</au><au>Bereketoğlu,Hüseyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear self adjointness and exact solution of Fokas-Olver-Rosenau-Qiao (FORQ) equation</atitle><jtitle>Communications Series A1 Mathematics &amp; Statistics</jtitle><date>2018-02</date><risdate>2018</risdate><volume>67</volume><issue>2</issue><spage>317</spage><epage>326</epage><pages>317-326</pages><issn>1303-5991</issn><abstract>Based on Lie’s symmetry approach, conservation laws are constructed for Fokas-Olver-Rosenau-Qiao(FORQ) equation and exact solution is obtained. Nonlocal conservation theorem is used to carry out the analysis of conservation process. Nonlinear self adjointness concept is applied to FORQ equation, it is proved to be strict self adjoint. Characteristic equation and similarity variable help us find exact solution of FORQ equation. Compared with solutions found in previous papers, our solution is new and important, since it is not possible to find exact solution of FORQ equation quite easily.</abstract><pub>Ankara Üniversitesi Fen Fakültesi</pub><doi>10.1501/Commua1_0000000885</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1303-5991
ispartof Communications Series A1 Mathematics & Statistics, 2018-02, Vol.67 (2), p.317-326
issn 1303-5991
language eng
recordid cdi_idealonline_journals_IDEAL_64016
source Alma/SFX Local Collection
subjects Matematik
title Nonlinear self adjointness and exact solution of Fokas-Olver-Rosenau-Qiao (FORQ) equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-idealonline&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20self%20adjointness%20and%20exact%20solution%20of%20Fokas-Olver-Rosenau-Qiao%20(FORQ)%20equation&rft.jtitle=Communications%20Series%20A1%20Mathematics%20&%20Statistics&rft.au=San,Sait&rft.date=2018-02&rft.volume=67&rft.issue=2&rft.spage=317&rft.epage=326&rft.pages=317-326&rft.issn=1303-5991&rft_id=info:doi/10.1501/Commua1_0000000885&rft_dat=%3Cidealonline%3EIDEAL_64016%3C/idealonline%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true