Symmetric 1-designs from PGL2(q), for q an odd prime power
All non-trivial point and block-primitive 1-(v, k, k) designs that admit the group G = PGL2(q), where q is a power of an odd prime, as a permutation group of automorphisms are determined. These self-dual and symmetric 1-designs are constructed by defining { |M|/|M ∩ Mg|: g ∈ G } to be the set of orb...
Gespeichert in:
Veröffentlicht in: | Glasnik matematički 2021-06, Vol.56 (1), p.1-15 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Glasnik matematički |
container_volume | 56 |
creator | Mbaale, Xavier Rodrigues, Bernardo Gabriel |
description | All non-trivial point and block-primitive 1-(v, k, k) designs that admit the group G = PGL2(q), where q is a power of an odd prime, as a permutation group of automorphisms are determined. These self-dual and symmetric 1-designs are constructed by defining { |M|/|M ∩ Mg|: g ∈ G } to be the set of orbit lengths of the primitive action of G on the conjugates of M. |
doi_str_mv | 10.3336/gm.56.1.01 |
format | Article |
fullrecord | <record><control><sourceid>crossref_hrcak</sourceid><recordid>TN_cdi_hrcak_primary_oai_hrcak_srce_hr_259297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3336_gm_56_1_01</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2201-4ee2750c7de74825e1f9ac5b72b441252cefb67ec12d79664cefda58e730068d3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsXP0GOKmbNZPNn402KVmFBQQVvIZvM1lW32yaC9Nu7peJp5j1-83gMIafAi7Is9dWiL5QuoOCwRyZQSc2Mrew-mXAOhnGr3g7JUc4fnOtKcTkh18-bvsfv1AUKLGLuFstM2zT09Glei7P1-SVth0TX1C_pECNdpa5Huhp-MB2Tg9Z_ZTz5m1Pyenf7Mrtn9eP8YXZTsyAEByYRhVE8mIhGVkIhtNYH1RjRSAlCiYBtow0GENFYreWoo1cVmnLbMpZTwna57yn4T7dt4NPGDb5zOyengOPqhLLCmpG_2PEhDTknbP9PgLvtl9yid0o7cBzKXwYGWM0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Symmetric 1-designs from PGL2(q), for q an odd prime power</title><source>Alma/SFX Local Collection</source><creator>Mbaale, Xavier ; Rodrigues, Bernardo Gabriel</creator><creatorcontrib>Mbaale, Xavier ; Rodrigues, Bernardo Gabriel ; School of Mathematics, Statistics and Computer Science , University of KwaZulu-Natal , Durban 4000, South Africa ; Department of Mathematics and Applied Mathematics, University of Pretoria, Hatfield 0028, South Africa</creatorcontrib><description>All non-trivial point and block-primitive 1-(v, k, k) designs that admit the group G = PGL2(q), where q is a power of an odd prime, as a permutation group of automorphisms are determined. These self-dual and symmetric 1-designs are constructed by defining { |M|/|M ∩ Mg|: g ∈ G } to be the set of orbit lengths of the primitive action of G on the conjugates of M.</description><identifier>ISSN: 0017-095X</identifier><identifier>EISSN: 1846-7989</identifier><identifier>DOI: 10.3336/gm.56.1.01</identifier><identifier>CODEN: GLMAB2</identifier><language>eng</language><publisher>Hrvatsko matematičko društvo i PMF-Matematički odjel, Sveučilišta u Zagrebu</publisher><subject>Symmetric designs, linear code, projective general linear group</subject><ispartof>Glasnik matematički, 2021-06, Vol.56 (1), p.1-15</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2201-4ee2750c7de74825e1f9ac5b72b441252cefb67ec12d79664cefda58e730068d3</citedby><cites>FETCH-LOGICAL-c2201-4ee2750c7de74825e1f9ac5b72b441252cefb67ec12d79664cefda58e730068d3</cites><orcidid>0000-0002-1349-0219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Mbaale, Xavier</creatorcontrib><creatorcontrib>Rodrigues, Bernardo Gabriel</creatorcontrib><creatorcontrib>School of Mathematics, Statistics and Computer Science , University of KwaZulu-Natal , Durban 4000, South Africa</creatorcontrib><creatorcontrib>Department of Mathematics and Applied Mathematics, University of Pretoria, Hatfield 0028, South Africa</creatorcontrib><title>Symmetric 1-designs from PGL2(q), for q an odd prime power</title><title>Glasnik matematički</title><description>All non-trivial point and block-primitive 1-(v, k, k) designs that admit the group G = PGL2(q), where q is a power of an odd prime, as a permutation group of automorphisms are determined. These self-dual and symmetric 1-designs are constructed by defining { |M|/|M ∩ Mg|: g ∈ G } to be the set of orbit lengths of the primitive action of G on the conjugates of M.</description><subject>Symmetric designs, linear code, projective general linear group</subject><issn>0017-095X</issn><issn>1846-7989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWKsXP0GOKmbNZPNn402KVmFBQQVvIZvM1lW32yaC9Nu7peJp5j1-83gMIafAi7Is9dWiL5QuoOCwRyZQSc2Mrew-mXAOhnGr3g7JUc4fnOtKcTkh18-bvsfv1AUKLGLuFstM2zT09Glei7P1-SVth0TX1C_pECNdpa5Huhp-MB2Tg9Z_ZTz5m1Pyenf7Mrtn9eP8YXZTsyAEByYRhVE8mIhGVkIhtNYH1RjRSAlCiYBtow0GENFYreWoo1cVmnLbMpZTwna57yn4T7dt4NPGDb5zOyengOPqhLLCmpG_2PEhDTknbP9PgLvtl9yid0o7cBzKXwYGWM0</recordid><startdate>20210624</startdate><enddate>20210624</enddate><creator>Mbaale, Xavier</creator><creator>Rodrigues, Bernardo Gabriel</creator><general>Hrvatsko matematičko društvo i PMF-Matematički odjel, Sveučilišta u Zagrebu</general><scope>AAYXX</scope><scope>CITATION</scope><scope>VP8</scope><orcidid>https://orcid.org/0000-0002-1349-0219</orcidid></search><sort><creationdate>20210624</creationdate><title>Symmetric 1-designs from PGL2(q), for q an odd prime power</title><author>Mbaale, Xavier ; Rodrigues, Bernardo Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2201-4ee2750c7de74825e1f9ac5b72b441252cefb67ec12d79664cefda58e730068d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Symmetric designs, linear code, projective general linear group</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mbaale, Xavier</creatorcontrib><creatorcontrib>Rodrigues, Bernardo Gabriel</creatorcontrib><creatorcontrib>School of Mathematics, Statistics and Computer Science , University of KwaZulu-Natal , Durban 4000, South Africa</creatorcontrib><creatorcontrib>Department of Mathematics and Applied Mathematics, University of Pretoria, Hatfield 0028, South Africa</creatorcontrib><collection>CrossRef</collection><collection>Hrcak: Portal of scientific journals of Croatia</collection><jtitle>Glasnik matematički</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mbaale, Xavier</au><au>Rodrigues, Bernardo Gabriel</au><aucorp>School of Mathematics, Statistics and Computer Science , University of KwaZulu-Natal , Durban 4000, South Africa</aucorp><aucorp>Department of Mathematics and Applied Mathematics, University of Pretoria, Hatfield 0028, South Africa</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetric 1-designs from PGL2(q), for q an odd prime power</atitle><jtitle>Glasnik matematički</jtitle><date>2021-06-24</date><risdate>2021</risdate><volume>56</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0017-095X</issn><eissn>1846-7989</eissn><coden>GLMAB2</coden><abstract>All non-trivial point and block-primitive 1-(v, k, k) designs that admit the group G = PGL2(q), where q is a power of an odd prime, as a permutation group of automorphisms are determined. These self-dual and symmetric 1-designs are constructed by defining { |M|/|M ∩ Mg|: g ∈ G } to be the set of orbit lengths of the primitive action of G on the conjugates of M.</abstract><pub>Hrvatsko matematičko društvo i PMF-Matematički odjel, Sveučilišta u Zagrebu</pub><doi>10.3336/gm.56.1.01</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1349-0219</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-095X |
ispartof | Glasnik matematički, 2021-06, Vol.56 (1), p.1-15 |
issn | 0017-095X 1846-7989 |
language | eng |
recordid | cdi_hrcak_primary_oai_hrcak_srce_hr_259297 |
source | Alma/SFX Local Collection |
subjects | Symmetric designs, linear code, projective general linear group |
title | Symmetric 1-designs from PGL2(q), for q an odd prime power |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_hrcak&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetric%201-designs%20from%20PGL2(q),%20for%20q%20an%20odd%20prime%20power&rft.jtitle=Glasnik%20matemati%C4%8Dki&rft.au=Mbaale,%20Xavier&rft.aucorp=School%20of%20Mathematics,%20Statistics%20and%20Computer%20Science%20,%20University%20of%20KwaZulu-Natal%20,%20Durban%204000,%20South%20Africa&rft.date=2021-06-24&rft.volume=56&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0017-095X&rft.eissn=1846-7989&rft.coden=GLMAB2&rft_id=info:doi/10.3336/gm.56.1.01&rft_dat=%3Ccrossref_hrcak%3E10_3336_gm_56_1_01%3C/crossref_hrcak%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |