Prognoza proizvodnje hidroenergije općim cirkulacijskim modelima primjenom tehnika strojnog i dubokog učenja (brana Almus, Turska)

Obnovljiva energija jedan je od najvažnijih čimbenika za razvijena i održiva društva. Međutim, njezina upotreba u elektroenergetskim sustavima može biti vrlo izazovna s obzirom na nepredvidljivost proizvodnje. Obnovljiva energija uglavnom ovisi o uvjetima okoline poput količine oborine, intenziteta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geofizika 2021-06, Vol.38 (1), p.1
Hauptverfasser: Al Rayess, Hesham Majed, Ülke Keskin, Asli
Format: Artikel
Sprache:hrv ; eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Obnovljiva energija jedan je od najvažnijih čimbenika za razvijena i održiva društva. Međutim, njezina upotreba u elektroenergetskim sustavima može biti vrlo izazovna s obzirom na nepredvidljivost proizvodnje. Obnovljiva energija uglavnom ovisi o uvjetima okoline poput količine oborine, intenziteta otjecanja i temperature zraka. Zbog toga očekivana proizvodnja električne energije jako fluktuira, što prognozu i proračun njenog unosa u elektroenergetsku mrežu čini vrlo izazovnim zadatkom. Točno predviđanje proizvodnje energije iznimno je važno za proces upravljanja energijom. U ovom radu se predstavljaju rezultati primjene tehnika strojnog učenja u kratkoročnom predviđanju količine proizvedene energije na temelju rezultata općih modela cirkulacije (GCM) za branu i hidroelektranu Almus blizu naselja Tokat u Turskoj. Studija prikazuje upotrebu tehnika modeliranja u procesu prognoze proizvodnje hidroenergije pomoću prognoziranih mjesečnih podataka GCM-a o proizvodnji hidroelektrana u razdoblju od 2018. do 2080. Za prognozu proizvodnje hidroenergije korišteni su modeli: dijagrama odlučivanja, dubinskog učenja, generalizirani linearni, dijagrama pojačanih nagiba i dijagrama slučajnih grana. Vrijednost korelacije s modelom dijagrama pojačanih nagiba iznosi 0,717, što znači da je to najuspješniji model za korištene podatke. Model dijagrama pojačanih nagiba korišten je u svakom GCM-u za dva scenarija: RCP4.5 i RCP8.5. Rezultati pokazuju da postoje male razlike između modela, što znači da predviđanja idu u sličnim smjerovima za sve ove modele
ISSN:0352-3659
1846-6346
DOI:10.15233/gfz.2021.38.4