Computing the associated cycles of certain Harish-Chandra modules
Let G_R be a simple real linear Lie group with maximal compact subgroup K_R and assume that rank(G_R) = rank(K_R). In [MPVZ] we proved that for any representation X of Gelfand-Kirillov dimension 1 2 dim(G_R /K_R), the polynomial on the dual of a compact Cartan subalgebra given by the dimension of th...
Gespeichert in:
Veröffentlicht in: | Glasnik matematički 2018-01, Vol.53 (2), p.275-330 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 330 |
---|---|
container_issue | 2 |
container_start_page | 275 |
container_title | Glasnik matematički |
container_volume | 53 |
creator | Mehdi, Salah Pandžić, Pavle Vogan, David Zierau, Roger |
description | Let G_R be a simple real linear Lie group with maximal compact subgroup K_R and assume that rank(G_R) = rank(K_R). In [MPVZ] we proved that for any representation X of Gelfand-Kirillov dimension 1 2 dim(G_R /K_R), the polynomial on the dual of a compact Cartan subalgebra given by the dimension of the Dirac index of members of the coherent family containing X is a linear combination, with integer coefficients, of the multiplicities of the irreducible components occurring in the associated cycle. In this paper we compute these coefficients explicitly. |
doi_str_mv | 10.3336/gm.53.2.05 |
format | Article |
fullrecord | <record><control><sourceid>hal_hrcak</sourceid><recordid>TN_cdi_hrcak_primary_oai_hrcak_srce_hr_214476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03336285v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-1f8cf17e28059106207106ef3990ff2711b5d6df29b0f038637c088be15b75ce3</originalsourceid><addsrcrecordid>eNpV0E1LAzEQBuAgCtbqxV-Qq0LWSbL5OpZFrVDwouAtZLNJd7XbLclW8N-7pUXwMjO8PDOHQeiWQsE5lw_rvhC8YAWIMzSjupREGW3O0QyAKgJGfFyiq5w_AaQWUM7Qohr63X7stms8tgG7nAffuTE02P_4Tch4iNiHNLpui5cudbklVeu2TXK4H5r9JK7RRXSbHG5OfY7enx7fqiVZvT6_VIsV8ZybkdCofaQqMA3CUJAM1FRD5MZAjExRWotGNpGZGiJwLbnyoHUdqKiV8IHPETnebZN3X3aXut6lHzu4zh6TnHyYRstoWSo5-buTd5t_erlY2UMGh48xLb7pZO-P1qch5xTi3wIFe2B23VvBLbMg-C9zKmpB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computing the associated cycles of certain Harish-Chandra modules</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Mehdi, Salah ; Pandžić, Pavle ; Vogan, David ; Zierau, Roger</creator><creatorcontrib>Mehdi, Salah ; Pandžić, Pavle ; Vogan, David ; Zierau, Roger ; Department of Mathematics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia ; Institut Elie Cartan de Lorraine, CNRS - UMR 7502, Université de Lorraine, Metz, F-57045, France ; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ; Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078, USA</creatorcontrib><description>Let G_R be a simple real linear Lie group with maximal compact subgroup K_R and assume that rank(G_R) = rank(K_R). In [MPVZ] we proved that for any representation X of Gelfand-Kirillov dimension 1 2 dim(G_R /K_R), the polynomial on the dual of a compact Cartan subalgebra given by the dimension of the Dirac index of members of the coherent family containing X is a linear combination, with integer coefficients, of the multiplicities of the irreducible components occurring in the associated cycle. In this paper we compute these coefficients explicitly.</description><identifier>ISSN: 0017-095X</identifier><identifier>EISSN: 1846-7989</identifier><identifier>DOI: 10.3336/gm.53.2.05</identifier><identifier>CODEN: GLMAB2</identifier><language>eng</language><publisher>Drazen Adamovic</publisher><subject>Mathematics</subject><ispartof>Glasnik matematički, 2018-01, Vol.53 (2), p.275-330</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-1f8cf17e28059106207106ef3990ff2711b5d6df29b0f038637c088be15b75ce3</citedby><cites>FETCH-LOGICAL-c339t-1f8cf17e28059106207106ef3990ff2711b5d6df29b0f038637c088be15b75ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03336285$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mehdi, Salah</creatorcontrib><creatorcontrib>Pandžić, Pavle</creatorcontrib><creatorcontrib>Vogan, David</creatorcontrib><creatorcontrib>Zierau, Roger</creatorcontrib><creatorcontrib>Department of Mathematics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia</creatorcontrib><creatorcontrib>Institut Elie Cartan de Lorraine, CNRS - UMR 7502, Université de Lorraine, Metz, F-57045, France</creatorcontrib><creatorcontrib>Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA</creatorcontrib><creatorcontrib>Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078, USA</creatorcontrib><title>Computing the associated cycles of certain Harish-Chandra modules</title><title>Glasnik matematički</title><description>Let G_R be a simple real linear Lie group with maximal compact subgroup K_R and assume that rank(G_R) = rank(K_R). In [MPVZ] we proved that for any representation X of Gelfand-Kirillov dimension 1 2 dim(G_R /K_R), the polynomial on the dual of a compact Cartan subalgebra given by the dimension of the Dirac index of members of the coherent family containing X is a linear combination, with integer coefficients, of the multiplicities of the irreducible components occurring in the associated cycle. In this paper we compute these coefficients explicitly.</description><subject>Mathematics</subject><issn>0017-095X</issn><issn>1846-7989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpV0E1LAzEQBuAgCtbqxV-Qq0LWSbL5OpZFrVDwouAtZLNJd7XbLclW8N-7pUXwMjO8PDOHQeiWQsE5lw_rvhC8YAWIMzSjupREGW3O0QyAKgJGfFyiq5w_AaQWUM7Qohr63X7stms8tgG7nAffuTE02P_4Tch4iNiHNLpui5cudbklVeu2TXK4H5r9JK7RRXSbHG5OfY7enx7fqiVZvT6_VIsV8ZybkdCofaQqMA3CUJAM1FRD5MZAjExRWotGNpGZGiJwLbnyoHUdqKiV8IHPETnebZN3X3aXut6lHzu4zh6TnHyYRstoWSo5-buTd5t_erlY2UMGh48xLb7pZO-P1qch5xTi3wIFe2B23VvBLbMg-C9zKmpB</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Mehdi, Salah</creator><creator>Pandžić, Pavle</creator><creator>Vogan, David</creator><creator>Zierau, Roger</creator><general>Drazen Adamovic</general><general>Hrvatsko matematičko društvo i PMF-Matematički odjel, Sveučilišta u Zagrebu</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>VP8</scope></search><sort><creationdate>20180101</creationdate><title>Computing the associated cycles of certain Harish-Chandra modules</title><author>Mehdi, Salah ; Pandžić, Pavle ; Vogan, David ; Zierau, Roger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-1f8cf17e28059106207106ef3990ff2711b5d6df29b0f038637c088be15b75ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehdi, Salah</creatorcontrib><creatorcontrib>Pandžić, Pavle</creatorcontrib><creatorcontrib>Vogan, David</creatorcontrib><creatorcontrib>Zierau, Roger</creatorcontrib><creatorcontrib>Department of Mathematics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia</creatorcontrib><creatorcontrib>Institut Elie Cartan de Lorraine, CNRS - UMR 7502, Université de Lorraine, Metz, F-57045, France</creatorcontrib><creatorcontrib>Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA</creatorcontrib><creatorcontrib>Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078, USA</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Hrcak: Portal of scientific journals of Croatia</collection><jtitle>Glasnik matematički</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehdi, Salah</au><au>Pandžić, Pavle</au><au>Vogan, David</au><au>Zierau, Roger</au><aucorp>Department of Mathematics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia</aucorp><aucorp>Institut Elie Cartan de Lorraine, CNRS - UMR 7502, Université de Lorraine, Metz, F-57045, France</aucorp><aucorp>Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA</aucorp><aucorp>Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078, USA</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing the associated cycles of certain Harish-Chandra modules</atitle><jtitle>Glasnik matematički</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>53</volume><issue>2</issue><spage>275</spage><epage>330</epage><pages>275-330</pages><issn>0017-095X</issn><eissn>1846-7989</eissn><coden>GLMAB2</coden><abstract>Let G_R be a simple real linear Lie group with maximal compact subgroup K_R and assume that rank(G_R) = rank(K_R). In [MPVZ] we proved that for any representation X of Gelfand-Kirillov dimension 1 2 dim(G_R /K_R), the polynomial on the dual of a compact Cartan subalgebra given by the dimension of the Dirac index of members of the coherent family containing X is a linear combination, with integer coefficients, of the multiplicities of the irreducible components occurring in the associated cycle. In this paper we compute these coefficients explicitly.</abstract><pub>Drazen Adamovic</pub><doi>10.3336/gm.53.2.05</doi><tpages>56</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-095X |
ispartof | Glasnik matematički, 2018-01, Vol.53 (2), p.275-330 |
issn | 0017-095X 1846-7989 |
language | eng |
recordid | cdi_hrcak_primary_oai_hrcak_srce_hr_214476 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Mathematics |
title | Computing the associated cycles of certain Harish-Chandra modules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_hrcak&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20the%20associated%20cycles%20of%20certain%20Harish-Chandra%20modules&rft.jtitle=Glasnik%20matemati%C4%8Dki&rft.au=Mehdi,%20Salah&rft.aucorp=Department%20of%20Mathematics,%20Faculty%20of%20Science,%20University%20of%20Zagreb,%2010000%20Zagreb,%20Croatia&rft.date=2018-01-01&rft.volume=53&rft.issue=2&rft.spage=275&rft.epage=330&rft.pages=275-330&rft.issn=0017-095X&rft.eissn=1846-7989&rft.coden=GLMAB2&rft_id=info:doi/10.3336/gm.53.2.05&rft_dat=%3Chal_hrcak%3Eoai_HAL_hal_03336285v1%3C/hal_hrcak%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |