Computing the associated cycles of certain Harish-Chandra modules

Let G_R be a simple real linear Lie group with maximal compact subgroup K_R and assume that rank(G_R) = rank(K_R). In [MPVZ] we proved that for any representation X of Gelfand-Kirillov dimension 1 2 dim(G_R /K_R), the polynomial on the dual of a compact Cartan subalgebra given by the dimension of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasnik matematički 2018-01, Vol.53 (2), p.275-330
Hauptverfasser: Mehdi, Salah, Pandžić, Pavle, Vogan, David, Zierau, Roger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G_R be a simple real linear Lie group with maximal compact subgroup K_R and assume that rank(G_R) = rank(K_R). In [MPVZ] we proved that for any representation X of Gelfand-Kirillov dimension 1 2 dim(G_R /K_R), the polynomial on the dual of a compact Cartan subalgebra given by the dimension of the Dirac index of members of the coherent family containing X is a linear combination, with integer coefficients, of the multiplicities of the irreducible components occurring in the associated cycle. In this paper we compute these coefficients explicitly.
ISSN:0017-095X
1846-7989
DOI:10.3336/gm.53.2.05