Green logistics – measures for reducing CO2

Paper presents measures for reducing CO2 in logistic operations, especially transportation. Fundamental measures (transport fuels, improving vehicle efficiency, vehicle technology, transport efficiency, traffic infrastructure management, integration of transport systems, safety and security, economi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pomorstvo 2015-06, Vol.29 (1), p.45
Hauptverfasser: Antoni, Alfonz, Perić, Mile, Čišić, Dragan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 45
container_title Pomorstvo
container_volume 29
creator Antoni, Alfonz
Perić, Mile
Čišić, Dragan
description Paper presents measures for reducing CO2 in logistic operations, especially transportation. Fundamental measures (transport fuels, improving vehicle efficiency, vehicle technology, transport efficiency, traffic infrastructure management, integration of transport systems, safety and security, economic aspects of change, broader environmental impacts, equity and accessibility, information and awareness, infrastructure, pricing and taxation and regulation) have been recognized, and discussed. Data obtained using questionnaires on substantial number of experts has been used and statistically processed. Using data mining techniques, authors have isolated information from a data set and converted it into a comprehensible structure for additional utilisation. Correlation analysis, multilevel hierarchy and principal factor analysis have been used. Finally, Bayesian classifier method is used to define Bayesian network in order to show interconnections between chosen factors.
format Article
fullrecord <record><control><sourceid>hrcak</sourceid><recordid>TN_cdi_hrcak_primary_oai_hrcak_srce_hr_140206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_hrcak_srce_hr_140206</sourcerecordid><originalsourceid>FETCH-hrcak_primary_oai_hrcak_srce_hr_1402063</originalsourceid><addsrcrecordid>eNpjYuA0tDAx07UwMbZgAbKNjY10DcwNLTgYeIuLM5MMjMwszQ3NjEw4GXTdi1JT8xRy8tMzi0syk4sVHjVMVshNTSwuLUotVkjLL1IoSk0pTc7MS1dw9jfiYWBNS8wpTuWF0twMum6uIc4euhlFyYnZ8QVFmbmJRZXx-YmZ8RCR4qLkVCAz3tDEwMjAzJhU9QAouj12</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Green logistics – measures for reducing CO2</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Antoni, Alfonz ; Perić, Mile ; Čišić, Dragan</creator><creatorcontrib>Antoni, Alfonz ; Perić, Mile ; Čišić, Dragan</creatorcontrib><description>Paper presents measures for reducing CO2 in logistic operations, especially transportation. Fundamental measures (transport fuels, improving vehicle efficiency, vehicle technology, transport efficiency, traffic infrastructure management, integration of transport systems, safety and security, economic aspects of change, broader environmental impacts, equity and accessibility, information and awareness, infrastructure, pricing and taxation and regulation) have been recognized, and discussed. Data obtained using questionnaires on substantial number of experts has been used and statistically processed. Using data mining techniques, authors have isolated information from a data set and converted it into a comprehensible structure for additional utilisation. Correlation analysis, multilevel hierarchy and principal factor analysis have been used. Finally, Bayesian classifier method is used to define Bayesian network in order to show interconnections between chosen factors.</description><identifier>ISSN: 1332-0718</identifier><identifier>EISSN: 1846-8438</identifier><language>eng</language><publisher>Pomorski fakultet u Rijeci</publisher><subject>Green logistics ; Logistic environmental impact ; Measures reducing CO2</subject><ispartof>Pomorstvo, 2015-06, Vol.29 (1), p.45</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6235-0987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,784,885</link.rule.ids></links><search><creatorcontrib>Antoni, Alfonz</creatorcontrib><creatorcontrib>Perić, Mile</creatorcontrib><creatorcontrib>Čišić, Dragan</creatorcontrib><title>Green logistics – measures for reducing CO2</title><title>Pomorstvo</title><description>Paper presents measures for reducing CO2 in logistic operations, especially transportation. Fundamental measures (transport fuels, improving vehicle efficiency, vehicle technology, transport efficiency, traffic infrastructure management, integration of transport systems, safety and security, economic aspects of change, broader environmental impacts, equity and accessibility, information and awareness, infrastructure, pricing and taxation and regulation) have been recognized, and discussed. Data obtained using questionnaires on substantial number of experts has been used and statistically processed. Using data mining techniques, authors have isolated information from a data set and converted it into a comprehensible structure for additional utilisation. Correlation analysis, multilevel hierarchy and principal factor analysis have been used. Finally, Bayesian classifier method is used to define Bayesian network in order to show interconnections between chosen factors.</description><subject>Green logistics</subject><subject>Logistic environmental impact</subject><subject>Measures reducing CO2</subject><issn>1332-0718</issn><issn>1846-8438</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0tDAx07UwMbZgAbKNjY10DcwNLTgYeIuLM5MMjMwszQ3NjEw4GXTdi1JT8xRy8tMzi0syk4sVHjVMVshNTSwuLUotVkjLL1IoSk0pTc7MS1dw9jfiYWBNS8wpTuWF0twMum6uIc4euhlFyYnZ8QVFmbmJRZXx-YmZ8RCR4qLkVCAz3tDEwMjAzJhU9QAouj12</recordid><startdate>20150630</startdate><enddate>20150630</enddate><creator>Antoni, Alfonz</creator><creator>Perić, Mile</creator><creator>Čišić, Dragan</creator><general>Pomorski fakultet u Rijeci</general><scope>VP8</scope><orcidid>https://orcid.org/0000-0001-6235-0987</orcidid></search><sort><creationdate>20150630</creationdate><title>Green logistics – measures for reducing CO2</title><author>Antoni, Alfonz ; Perić, Mile ; Čišić, Dragan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hrcak_primary_oai_hrcak_srce_hr_1402063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Green logistics</topic><topic>Logistic environmental impact</topic><topic>Measures reducing CO2</topic><toplevel>online_resources</toplevel><creatorcontrib>Antoni, Alfonz</creatorcontrib><creatorcontrib>Perić, Mile</creatorcontrib><creatorcontrib>Čišić, Dragan</creatorcontrib><collection>Hrcak: Portal of scientific journals of Croatia</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antoni, Alfonz</au><au>Perić, Mile</au><au>Čišić, Dragan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Green logistics – measures for reducing CO2</atitle><jtitle>Pomorstvo</jtitle><date>2015-06-30</date><risdate>2015</risdate><volume>29</volume><issue>1</issue><spage>45</spage><pages>45-</pages><issn>1332-0718</issn><eissn>1846-8438</eissn><abstract>Paper presents measures for reducing CO2 in logistic operations, especially transportation. Fundamental measures (transport fuels, improving vehicle efficiency, vehicle technology, transport efficiency, traffic infrastructure management, integration of transport systems, safety and security, economic aspects of change, broader environmental impacts, equity and accessibility, information and awareness, infrastructure, pricing and taxation and regulation) have been recognized, and discussed. Data obtained using questionnaires on substantial number of experts has been used and statistically processed. Using data mining techniques, authors have isolated information from a data set and converted it into a comprehensible structure for additional utilisation. Correlation analysis, multilevel hierarchy and principal factor analysis have been used. Finally, Bayesian classifier method is used to define Bayesian network in order to show interconnections between chosen factors.</abstract><pub>Pomorski fakultet u Rijeci</pub><orcidid>https://orcid.org/0000-0001-6235-0987</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1332-0718
ispartof Pomorstvo, 2015-06, Vol.29 (1), p.45
issn 1332-0718
1846-8438
language eng
recordid cdi_hrcak_primary_oai_hrcak_srce_hr_140206
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Green logistics
Logistic environmental impact
Measures reducing CO2
title Green logistics – measures for reducing CO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hrcak&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Green%20logistics%20%E2%80%93%20measures%20for%20reducing%20CO2&rft.jtitle=Pomorstvo&rft.au=Antoni,%20Alfonz&rft.date=2015-06-30&rft.volume=29&rft.issue=1&rft.spage=45&rft.pages=45-&rft.issn=1332-0718&rft.eissn=1846-8438&rft_id=info:doi/&rft_dat=%3Chrcak%3Eoai_hrcak_srce_hr_140206%3C/hrcak%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true