A Novel Memristor Chaotic System with a Hidden Attractor and Multistability and Its Implementation in a Circuit
By introducing an ideal and active flux-controlled memristor and tangent function into an existing chaotic system, an interesting memristor-based self-replication chaotic system is proposed. The most striking feature is that this system has infinite line equilibria and exhibits the extreme multistab...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2021, Vol.2021, p.1-16 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2021 |
creator | Huang, Lili Wang, Yanling Jiang, Yicheng Lei, Tengfei |
description | By introducing an ideal and active flux-controlled memristor and tangent function into an existing chaotic system, an interesting memristor-based self-replication chaotic system is proposed. The most striking feature is that this system has infinite line equilibria and exhibits the extreme multistability phenomenon of coexisting infinitely many attractors. In this paper, bifurcation diagrams and Lyapunov exponential spectrum are used to analyze in detail the influence of various parameter changes on the dynamic behavior of the system; it shows that the newly proposed chaotic system has the phenomenon of alternating chaos and limit cycle. Especially, transition behavior of the transient period with steady chaos can be also found for some initial conditions. Moreover, a hardware circuit is designed by PSpice and fabricated, and its experimental results effectively verify the truth of extreme multistability. |
doi_str_mv | 10.1155/2021/7457220 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_hindawi_primary_10_1155_2021_7457220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540407344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-6909884505fc90fb5ffecf0c410a0b9ef7a878f775dbbf9c3a26514fab544e253</originalsourceid><addsrcrecordid>eNp9kMFOAyEQhonRxFq9-QAkHnUtsFB2j81GbZNWD2rijbAspDS7SwXWpm8vtT17msnk-2cyHwC3GD1izNiEIIInnDJOCDoDI8ymecYw5eepR4RmmORfl-AqhA1KJMPFCLgZfHU_uoUr3XkbovOwWksXrYLv-xB1B3c2rqGEc9s0uoezGL1UB0z2DVwNbUwhWdvWxv3faBEDXHTbVne6jzJa10Pbp3xlvRpsvAYXRrZB35zqGHw-P31U82z59rKoZstM5TmP2bREZVFQhphRJTI1M0YrgxTFSKK61IbLgheGc9bUtSlVLsk0fWpkzSjVhOVjcHfcu_Xue9Ahio0bfJ9OCsIooojnlCbq4Ugp70Lw2oitt530e4GROCgVB6XipDTh90d8bftG7uz_9C-HI3Y7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540407344</pqid></control><display><type>article</type><title>A Novel Memristor Chaotic System with a Hidden Attractor and Multistability and Its Implementation in a Circuit</title><source>Wiley Open Access</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Huang, Lili ; Wang, Yanling ; Jiang, Yicheng ; Lei, Tengfei</creator><contributor>Qi, Yi ; Yi Qi</contributor><creatorcontrib>Huang, Lili ; Wang, Yanling ; Jiang, Yicheng ; Lei, Tengfei ; Qi, Yi ; Yi Qi</creatorcontrib><description>By introducing an ideal and active flux-controlled memristor and tangent function into an existing chaotic system, an interesting memristor-based self-replication chaotic system is proposed. The most striking feature is that this system has infinite line equilibria and exhibits the extreme multistability phenomenon of coexisting infinitely many attractors. In this paper, bifurcation diagrams and Lyapunov exponential spectrum are used to analyze in detail the influence of various parameter changes on the dynamic behavior of the system; it shows that the newly proposed chaotic system has the phenomenon of alternating chaos and limit cycle. Especially, transition behavior of the transient period with steady chaos can be also found for some initial conditions. Moreover, a hardware circuit is designed by PSpice and fabricated, and its experimental results effectively verify the truth of extreme multistability.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/7457220</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Active control ; Attractors (mathematics) ; Behavior ; Chaos theory ; Circuit design ; Equilibrium ; Initial conditions ; Memristors ; Parameter estimation ; Variables</subject><ispartof>Mathematical problems in engineering, 2021, Vol.2021, p.1-16</ispartof><rights>Copyright © 2021 Lili Huang et al.</rights><rights>Copyright © 2021 Lili Huang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-6909884505fc90fb5ffecf0c410a0b9ef7a878f775dbbf9c3a26514fab544e253</citedby><cites>FETCH-LOGICAL-c337t-6909884505fc90fb5ffecf0c410a0b9ef7a878f775dbbf9c3a26514fab544e253</cites><orcidid>0000-0001-5243-1046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Qi, Yi</contributor><contributor>Yi Qi</contributor><creatorcontrib>Huang, Lili</creatorcontrib><creatorcontrib>Wang, Yanling</creatorcontrib><creatorcontrib>Jiang, Yicheng</creatorcontrib><creatorcontrib>Lei, Tengfei</creatorcontrib><title>A Novel Memristor Chaotic System with a Hidden Attractor and Multistability and Its Implementation in a Circuit</title><title>Mathematical problems in engineering</title><description>By introducing an ideal and active flux-controlled memristor and tangent function into an existing chaotic system, an interesting memristor-based self-replication chaotic system is proposed. The most striking feature is that this system has infinite line equilibria and exhibits the extreme multistability phenomenon of coexisting infinitely many attractors. In this paper, bifurcation diagrams and Lyapunov exponential spectrum are used to analyze in detail the influence of various parameter changes on the dynamic behavior of the system; it shows that the newly proposed chaotic system has the phenomenon of alternating chaos and limit cycle. Especially, transition behavior of the transient period with steady chaos can be also found for some initial conditions. Moreover, a hardware circuit is designed by PSpice and fabricated, and its experimental results effectively verify the truth of extreme multistability.</description><subject>Active control</subject><subject>Attractors (mathematics)</subject><subject>Behavior</subject><subject>Chaos theory</subject><subject>Circuit design</subject><subject>Equilibrium</subject><subject>Initial conditions</subject><subject>Memristors</subject><subject>Parameter estimation</subject><subject>Variables</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFOAyEQhonRxFq9-QAkHnUtsFB2j81GbZNWD2rijbAspDS7SwXWpm8vtT17msnk-2cyHwC3GD1izNiEIIInnDJOCDoDI8ymecYw5eepR4RmmORfl-AqhA1KJMPFCLgZfHU_uoUr3XkbovOwWksXrYLv-xB1B3c2rqGEc9s0uoezGL1UB0z2DVwNbUwhWdvWxv3faBEDXHTbVne6jzJa10Pbp3xlvRpsvAYXRrZB35zqGHw-P31U82z59rKoZstM5TmP2bREZVFQhphRJTI1M0YrgxTFSKK61IbLgheGc9bUtSlVLsk0fWpkzSjVhOVjcHfcu_Xue9Ahio0bfJ9OCsIooojnlCbq4Ugp70Lw2oitt530e4GROCgVB6XipDTh90d8bftG7uz_9C-HI3Y7</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Huang, Lili</creator><creator>Wang, Yanling</creator><creator>Jiang, Yicheng</creator><creator>Lei, Tengfei</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5243-1046</orcidid></search><sort><creationdate>2021</creationdate><title>A Novel Memristor Chaotic System with a Hidden Attractor and Multistability and Its Implementation in a Circuit</title><author>Huang, Lili ; Wang, Yanling ; Jiang, Yicheng ; Lei, Tengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-6909884505fc90fb5ffecf0c410a0b9ef7a878f775dbbf9c3a26514fab544e253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>Attractors (mathematics)</topic><topic>Behavior</topic><topic>Chaos theory</topic><topic>Circuit design</topic><topic>Equilibrium</topic><topic>Initial conditions</topic><topic>Memristors</topic><topic>Parameter estimation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Lili</creatorcontrib><creatorcontrib>Wang, Yanling</creatorcontrib><creatorcontrib>Jiang, Yicheng</creatorcontrib><creatorcontrib>Lei, Tengfei</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Lili</au><au>Wang, Yanling</au><au>Jiang, Yicheng</au><au>Lei, Tengfei</au><au>Qi, Yi</au><au>Yi Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Memristor Chaotic System with a Hidden Attractor and Multistability and Its Implementation in a Circuit</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>By introducing an ideal and active flux-controlled memristor and tangent function into an existing chaotic system, an interesting memristor-based self-replication chaotic system is proposed. The most striking feature is that this system has infinite line equilibria and exhibits the extreme multistability phenomenon of coexisting infinitely many attractors. In this paper, bifurcation diagrams and Lyapunov exponential spectrum are used to analyze in detail the influence of various parameter changes on the dynamic behavior of the system; it shows that the newly proposed chaotic system has the phenomenon of alternating chaos and limit cycle. Especially, transition behavior of the transient period with steady chaos can be also found for some initial conditions. Moreover, a hardware circuit is designed by PSpice and fabricated, and its experimental results effectively verify the truth of extreme multistability.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/7457220</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5243-1046</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2021, Vol.2021, p.1-16 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_hindawi_primary_10_1155_2021_7457220 |
source | Wiley Open Access; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Active control Attractors (mathematics) Behavior Chaos theory Circuit design Equilibrium Initial conditions Memristors Parameter estimation Variables |
title | A Novel Memristor Chaotic System with a Hidden Attractor and Multistability and Its Implementation in a Circuit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Memristor%20Chaotic%20System%20with%20a%20Hidden%20Attractor%20and%20Multistability%20and%20Its%20Implementation%20in%20a%20Circuit&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Huang,%20Lili&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/7457220&rft_dat=%3Cproquest_cross%3E2540407344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540407344&rft_id=info:pmid/&rfr_iscdi=true |