A Novel Memristor Chaotic System with a Hidden Attractor and Multistability and Its Implementation in a Circuit

By introducing an ideal and active flux-controlled memristor and tangent function into an existing chaotic system, an interesting memristor-based self-replication chaotic system is proposed. The most striking feature is that this system has infinite line equilibria and exhibits the extreme multistab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021, Vol.2021, p.1-16
Hauptverfasser: Huang, Lili, Wang, Yanling, Jiang, Yicheng, Lei, Tengfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2021
creator Huang, Lili
Wang, Yanling
Jiang, Yicheng
Lei, Tengfei
description By introducing an ideal and active flux-controlled memristor and tangent function into an existing chaotic system, an interesting memristor-based self-replication chaotic system is proposed. The most striking feature is that this system has infinite line equilibria and exhibits the extreme multistability phenomenon of coexisting infinitely many attractors. In this paper, bifurcation diagrams and Lyapunov exponential spectrum are used to analyze in detail the influence of various parameter changes on the dynamic behavior of the system; it shows that the newly proposed chaotic system has the phenomenon of alternating chaos and limit cycle. Especially, transition behavior of the transient period with steady chaos can be also found for some initial conditions. Moreover, a hardware circuit is designed by PSpice and fabricated, and its experimental results effectively verify the truth of extreme multistability.
doi_str_mv 10.1155/2021/7457220
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_hindawi_primary_10_1155_2021_7457220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540407344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-6909884505fc90fb5ffecf0c410a0b9ef7a878f775dbbf9c3a26514fab544e253</originalsourceid><addsrcrecordid>eNp9kMFOAyEQhonRxFq9-QAkHnUtsFB2j81GbZNWD2rijbAspDS7SwXWpm8vtT17msnk-2cyHwC3GD1izNiEIIInnDJOCDoDI8ymecYw5eepR4RmmORfl-AqhA1KJMPFCLgZfHU_uoUr3XkbovOwWksXrYLv-xB1B3c2rqGEc9s0uoezGL1UB0z2DVwNbUwhWdvWxv3faBEDXHTbVne6jzJa10Pbp3xlvRpsvAYXRrZB35zqGHw-P31U82z59rKoZstM5TmP2bREZVFQhphRJTI1M0YrgxTFSKK61IbLgheGc9bUtSlVLsk0fWpkzSjVhOVjcHfcu_Xue9Ahio0bfJ9OCsIooojnlCbq4Ugp70Lw2oitt530e4GROCgVB6XipDTh90d8bftG7uz_9C-HI3Y7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540407344</pqid></control><display><type>article</type><title>A Novel Memristor Chaotic System with a Hidden Attractor and Multistability and Its Implementation in a Circuit</title><source>Wiley Open Access</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Huang, Lili ; Wang, Yanling ; Jiang, Yicheng ; Lei, Tengfei</creator><contributor>Qi, Yi ; Yi Qi</contributor><creatorcontrib>Huang, Lili ; Wang, Yanling ; Jiang, Yicheng ; Lei, Tengfei ; Qi, Yi ; Yi Qi</creatorcontrib><description>By introducing an ideal and active flux-controlled memristor and tangent function into an existing chaotic system, an interesting memristor-based self-replication chaotic system is proposed. The most striking feature is that this system has infinite line equilibria and exhibits the extreme multistability phenomenon of coexisting infinitely many attractors. In this paper, bifurcation diagrams and Lyapunov exponential spectrum are used to analyze in detail the influence of various parameter changes on the dynamic behavior of the system; it shows that the newly proposed chaotic system has the phenomenon of alternating chaos and limit cycle. Especially, transition behavior of the transient period with steady chaos can be also found for some initial conditions. Moreover, a hardware circuit is designed by PSpice and fabricated, and its experimental results effectively verify the truth of extreme multistability.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/7457220</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Active control ; Attractors (mathematics) ; Behavior ; Chaos theory ; Circuit design ; Equilibrium ; Initial conditions ; Memristors ; Parameter estimation ; Variables</subject><ispartof>Mathematical problems in engineering, 2021, Vol.2021, p.1-16</ispartof><rights>Copyright © 2021 Lili Huang et al.</rights><rights>Copyright © 2021 Lili Huang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-6909884505fc90fb5ffecf0c410a0b9ef7a878f775dbbf9c3a26514fab544e253</citedby><cites>FETCH-LOGICAL-c337t-6909884505fc90fb5ffecf0c410a0b9ef7a878f775dbbf9c3a26514fab544e253</cites><orcidid>0000-0001-5243-1046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Qi, Yi</contributor><contributor>Yi Qi</contributor><creatorcontrib>Huang, Lili</creatorcontrib><creatorcontrib>Wang, Yanling</creatorcontrib><creatorcontrib>Jiang, Yicheng</creatorcontrib><creatorcontrib>Lei, Tengfei</creatorcontrib><title>A Novel Memristor Chaotic System with a Hidden Attractor and Multistability and Its Implementation in a Circuit</title><title>Mathematical problems in engineering</title><description>By introducing an ideal and active flux-controlled memristor and tangent function into an existing chaotic system, an interesting memristor-based self-replication chaotic system is proposed. The most striking feature is that this system has infinite line equilibria and exhibits the extreme multistability phenomenon of coexisting infinitely many attractors. In this paper, bifurcation diagrams and Lyapunov exponential spectrum are used to analyze in detail the influence of various parameter changes on the dynamic behavior of the system; it shows that the newly proposed chaotic system has the phenomenon of alternating chaos and limit cycle. Especially, transition behavior of the transient period with steady chaos can be also found for some initial conditions. Moreover, a hardware circuit is designed by PSpice and fabricated, and its experimental results effectively verify the truth of extreme multistability.</description><subject>Active control</subject><subject>Attractors (mathematics)</subject><subject>Behavior</subject><subject>Chaos theory</subject><subject>Circuit design</subject><subject>Equilibrium</subject><subject>Initial conditions</subject><subject>Memristors</subject><subject>Parameter estimation</subject><subject>Variables</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFOAyEQhonRxFq9-QAkHnUtsFB2j81GbZNWD2rijbAspDS7SwXWpm8vtT17msnk-2cyHwC3GD1izNiEIIInnDJOCDoDI8ymecYw5eepR4RmmORfl-AqhA1KJMPFCLgZfHU_uoUr3XkbovOwWksXrYLv-xB1B3c2rqGEc9s0uoezGL1UB0z2DVwNbUwhWdvWxv3faBEDXHTbVne6jzJa10Pbp3xlvRpsvAYXRrZB35zqGHw-P31U82z59rKoZstM5TmP2bREZVFQhphRJTI1M0YrgxTFSKK61IbLgheGc9bUtSlVLsk0fWpkzSjVhOVjcHfcu_Xue9Ahio0bfJ9OCsIooojnlCbq4Ugp70Lw2oitt530e4GROCgVB6XipDTh90d8bftG7uz_9C-HI3Y7</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Huang, Lili</creator><creator>Wang, Yanling</creator><creator>Jiang, Yicheng</creator><creator>Lei, Tengfei</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5243-1046</orcidid></search><sort><creationdate>2021</creationdate><title>A Novel Memristor Chaotic System with a Hidden Attractor and Multistability and Its Implementation in a Circuit</title><author>Huang, Lili ; Wang, Yanling ; Jiang, Yicheng ; Lei, Tengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-6909884505fc90fb5ffecf0c410a0b9ef7a878f775dbbf9c3a26514fab544e253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>Attractors (mathematics)</topic><topic>Behavior</topic><topic>Chaos theory</topic><topic>Circuit design</topic><topic>Equilibrium</topic><topic>Initial conditions</topic><topic>Memristors</topic><topic>Parameter estimation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Lili</creatorcontrib><creatorcontrib>Wang, Yanling</creatorcontrib><creatorcontrib>Jiang, Yicheng</creatorcontrib><creatorcontrib>Lei, Tengfei</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Lili</au><au>Wang, Yanling</au><au>Jiang, Yicheng</au><au>Lei, Tengfei</au><au>Qi, Yi</au><au>Yi Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Memristor Chaotic System with a Hidden Attractor and Multistability and Its Implementation in a Circuit</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>By introducing an ideal and active flux-controlled memristor and tangent function into an existing chaotic system, an interesting memristor-based self-replication chaotic system is proposed. The most striking feature is that this system has infinite line equilibria and exhibits the extreme multistability phenomenon of coexisting infinitely many attractors. In this paper, bifurcation diagrams and Lyapunov exponential spectrum are used to analyze in detail the influence of various parameter changes on the dynamic behavior of the system; it shows that the newly proposed chaotic system has the phenomenon of alternating chaos and limit cycle. Especially, transition behavior of the transient period with steady chaos can be also found for some initial conditions. Moreover, a hardware circuit is designed by PSpice and fabricated, and its experimental results effectively verify the truth of extreme multistability.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/7457220</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5243-1046</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2021, Vol.2021, p.1-16
issn 1024-123X
1563-5147
language eng
recordid cdi_hindawi_primary_10_1155_2021_7457220
source Wiley Open Access; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Active control
Attractors (mathematics)
Behavior
Chaos theory
Circuit design
Equilibrium
Initial conditions
Memristors
Parameter estimation
Variables
title A Novel Memristor Chaotic System with a Hidden Attractor and Multistability and Its Implementation in a Circuit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Memristor%20Chaotic%20System%20with%20a%20Hidden%20Attractor%20and%20Multistability%20and%20Its%20Implementation%20in%20a%20Circuit&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Huang,%20Lili&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/7457220&rft_dat=%3Cproquest_cross%3E2540407344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540407344&rft_id=info:pmid/&rfr_iscdi=true