Portfolio Selection with respect to the Probabilistic Preference in Variable Risk Appetites: A Double-Hierarchy Analysis Method

Traditional portfolio selection models mainly obtain the optimized portfolio ratio by focusing on the prices of financial products. However, investors’ multiple preferences and risk appetites are also significant factors that should be taken into account. In consideration of these two factors simult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1), Article 5512770
Hauptverfasser: Gu, Ruitao, Chen, Qingjuan, Zhang, Qiaoyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Complexity (New York, N.Y.)
container_volume 2021
creator Gu, Ruitao
Chen, Qingjuan
Zhang, Qiaoyun
description Traditional portfolio selection models mainly obtain the optimized portfolio ratio by focusing on the prices of financial products. However, investors’ multiple preferences and risk appetites are also significant factors that should be taken into account. In consideration of these two factors simultaneously, we propose a double-hierarchy model in this paper. Specifically, the first hierarchy quantifies investors’ risk appetite based on a historical simulation method and probabilistic preference theory. This hierarchy can be utilized to describe investors’ variable risk appetites and ensure the obtained investment ratios meet investors’ immediate risk requirements. Then, using the cross-efficiency evaluation principle, the optimal investment ratios can be derived by fusing investors’ multiple preferences and risk appetites in the second hierarchy. Lastly, an illustrative example about evaluating the 10 largest capitalized stocks on the Shenzhen Stock Exchange is given to verify the feasibility and effectiveness of our newly proposed model. We make the theoretical contribution to improve the traditional portfolio selection model, especially considering investors’ subjective preferences and risk appetite. Moreover, the proposed model can be practical for assisting investors with their investment strategies in real life.
doi_str_mv 10.1155/2021/5512770
format Article
fullrecord <record><control><sourceid>proquest_hinda</sourceid><recordid>TN_cdi_hindawi_primary_10_1155_2021_5512770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bdbff9d145c142fea88c1d5e944f199e</doaj_id><sourcerecordid>2520676507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-e6cb59b3ddd910d59dc0928e5d85979a931004a5668aa5358f0537e9bb02e97f3</originalsourceid><addsrcrecordid>eNqNUcmO1DAQjRBIDAM3PsASRwhjO_HGrdUsM9IgRmxXy0uFuAlxsN1q9Ylfx6FHww1xqirXe69c9ZrmKcEvCWHsgmJKLhgjVAh8rzkjWKkWM8rvr7ngLRVSPGwe5bzDGCveibPm101MZYhTiOgTTOBKiDM6hDKiBHmpNSoRlRHQTYrW2DCFXIKrFQyQYHaAwoy-mhSMnQB9DPk72iwLlFAgv0Ib9Drua6O9DJBMcuMRbWYzHXPI6D2UMfrHzYPBTBme3Mbz5svbN5-3l-31h3dX281163rclRa4s0zZznuvCPZMeYcVlcC8ZEooozqCcW8Y59IY1jE5YNYJUNZiCkoM3XlzddL10ez0ksIPk446mqD_PMT0TZtUN5tAW2-HQXnSM0d6OoCR0hHPQPX9QJSCqvXspLWk-HMPuehd3Ke6V9aUUcwFZ1hU1IsTyqWYc73X3VSC9WqXXu3St3ZVuDzBD2DjkF1Yj3tHqX5x3kvesZphuQ3FrE5t434ulfr8_6l_0WOYvTmEf3_rN3uItdg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520676507</pqid></control><display><type>article</type><title>Portfolio Selection with respect to the Probabilistic Preference in Variable Risk Appetites: A Double-Hierarchy Analysis Method</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Web of Science - Social Sciences Citation Index – 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Gu, Ruitao ; Chen, Qingjuan ; Zhang, Qiaoyun</creator><contributor>Zhou, Wei ; Wei Zhou</contributor><creatorcontrib>Gu, Ruitao ; Chen, Qingjuan ; Zhang, Qiaoyun ; Zhou, Wei ; Wei Zhou</creatorcontrib><description>Traditional portfolio selection models mainly obtain the optimized portfolio ratio by focusing on the prices of financial products. However, investors’ multiple preferences and risk appetites are also significant factors that should be taken into account. In consideration of these two factors simultaneously, we propose a double-hierarchy model in this paper. Specifically, the first hierarchy quantifies investors’ risk appetite based on a historical simulation method and probabilistic preference theory. This hierarchy can be utilized to describe investors’ variable risk appetites and ensure the obtained investment ratios meet investors’ immediate risk requirements. Then, using the cross-efficiency evaluation principle, the optimal investment ratios can be derived by fusing investors’ multiple preferences and risk appetites in the second hierarchy. Lastly, an illustrative example about evaluating the 10 largest capitalized stocks on the Shenzhen Stock Exchange is given to verify the feasibility and effectiveness of our newly proposed model. We make the theoretical contribution to improve the traditional portfolio selection model, especially considering investors’ subjective preferences and risk appetite. Moreover, the proposed model can be practical for assisting investors with their investment strategies in real life.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2021/5512770</identifier><language>eng</language><publisher>LONDON: Hindawi</publisher><subject>Algorithms ; Attitudes ; Efficiency ; Investment policy ; Investment strategy ; Investments ; Mathematics ; Mathematics, Interdisciplinary Applications ; Multidisciplinary Sciences ; Physical Sciences ; Preferences ; Profitability ; Profits ; Rates of return ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Stock exchanges ; Venture capital</subject><ispartof>Complexity (New York, N.Y.), 2021, Vol.2021 (1), Article 5512770</ispartof><rights>Copyright © 2021 Ruitao Gu et al.</rights><rights>Copyright © 2021 Ruitao Gu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>0</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000664863500008</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c403t-e6cb59b3ddd910d59dc0928e5d85979a931004a5668aa5358f0537e9bb02e97f3</citedby><cites>FETCH-LOGICAL-c403t-e6cb59b3ddd910d59dc0928e5d85979a931004a5668aa5358f0537e9bb02e97f3</cites><orcidid>0000-0002-2345-7674 ; 0000-0002-8863-0132 ; 0000-0001-9656-4561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,878,2103,2115,4025,27928,27929,27930,39262,39263</link.rule.ids></links><search><contributor>Zhou, Wei</contributor><contributor>Wei Zhou</contributor><creatorcontrib>Gu, Ruitao</creatorcontrib><creatorcontrib>Chen, Qingjuan</creatorcontrib><creatorcontrib>Zhang, Qiaoyun</creatorcontrib><title>Portfolio Selection with respect to the Probabilistic Preference in Variable Risk Appetites: A Double-Hierarchy Analysis Method</title><title>Complexity (New York, N.Y.)</title><addtitle>COMPLEXITY</addtitle><description>Traditional portfolio selection models mainly obtain the optimized portfolio ratio by focusing on the prices of financial products. However, investors’ multiple preferences and risk appetites are also significant factors that should be taken into account. In consideration of these two factors simultaneously, we propose a double-hierarchy model in this paper. Specifically, the first hierarchy quantifies investors’ risk appetite based on a historical simulation method and probabilistic preference theory. This hierarchy can be utilized to describe investors’ variable risk appetites and ensure the obtained investment ratios meet investors’ immediate risk requirements. Then, using the cross-efficiency evaluation principle, the optimal investment ratios can be derived by fusing investors’ multiple preferences and risk appetites in the second hierarchy. Lastly, an illustrative example about evaluating the 10 largest capitalized stocks on the Shenzhen Stock Exchange is given to verify the feasibility and effectiveness of our newly proposed model. We make the theoretical contribution to improve the traditional portfolio selection model, especially considering investors’ subjective preferences and risk appetite. Moreover, the proposed model can be practical for assisting investors with their investment strategies in real life.</description><subject>Algorithms</subject><subject>Attitudes</subject><subject>Efficiency</subject><subject>Investment policy</subject><subject>Investment strategy</subject><subject>Investments</subject><subject>Mathematics</subject><subject>Mathematics, Interdisciplinary Applications</subject><subject>Multidisciplinary Sciences</subject><subject>Physical Sciences</subject><subject>Preferences</subject><subject>Profitability</subject><subject>Profits</subject><subject>Rates of return</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Stock exchanges</subject><subject>Venture capital</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>GIZIO</sourceid><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNUcmO1DAQjRBIDAM3PsASRwhjO_HGrdUsM9IgRmxXy0uFuAlxsN1q9Ylfx6FHww1xqirXe69c9ZrmKcEvCWHsgmJKLhgjVAh8rzkjWKkWM8rvr7ngLRVSPGwe5bzDGCveibPm101MZYhTiOgTTOBKiDM6hDKiBHmpNSoRlRHQTYrW2DCFXIKrFQyQYHaAwoy-mhSMnQB9DPk72iwLlFAgv0Ib9Drua6O9DJBMcuMRbWYzHXPI6D2UMfrHzYPBTBme3Mbz5svbN5-3l-31h3dX281163rclRa4s0zZznuvCPZMeYcVlcC8ZEooozqCcW8Y59IY1jE5YNYJUNZiCkoM3XlzddL10ez0ksIPk446mqD_PMT0TZtUN5tAW2-HQXnSM0d6OoCR0hHPQPX9QJSCqvXspLWk-HMPuehd3Ke6V9aUUcwFZ1hU1IsTyqWYc73X3VSC9WqXXu3St3ZVuDzBD2DjkF1Yj3tHqX5x3kvesZphuQ3FrE5t434ulfr8_6l_0WOYvTmEf3_rN3uItdg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Gu, Ruitao</creator><creator>Chen, Qingjuan</creator><creator>Zhang, Qiaoyun</creator><general>Hindawi</general><general>Wiley-Hindawi</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>17B</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2345-7674</orcidid><orcidid>https://orcid.org/0000-0002-8863-0132</orcidid><orcidid>https://orcid.org/0000-0001-9656-4561</orcidid></search><sort><creationdate>2021</creationdate><title>Portfolio Selection with respect to the Probabilistic Preference in Variable Risk Appetites: A Double-Hierarchy Analysis Method</title><author>Gu, Ruitao ; Chen, Qingjuan ; Zhang, Qiaoyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-e6cb59b3ddd910d59dc0928e5d85979a931004a5668aa5358f0537e9bb02e97f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Attitudes</topic><topic>Efficiency</topic><topic>Investment policy</topic><topic>Investment strategy</topic><topic>Investments</topic><topic>Mathematics</topic><topic>Mathematics, Interdisciplinary Applications</topic><topic>Multidisciplinary Sciences</topic><topic>Physical Sciences</topic><topic>Preferences</topic><topic>Profitability</topic><topic>Profits</topic><topic>Rates of return</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Stock exchanges</topic><topic>Venture capital</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Ruitao</creatorcontrib><creatorcontrib>Chen, Qingjuan</creatorcontrib><creatorcontrib>Zhang, Qiaoyun</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Web of Knowledge</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Ruitao</au><au>Chen, Qingjuan</au><au>Zhang, Qiaoyun</au><au>Zhou, Wei</au><au>Wei Zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Portfolio Selection with respect to the Probabilistic Preference in Variable Risk Appetites: A Double-Hierarchy Analysis Method</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><stitle>COMPLEXITY</stitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><artnum>5512770</artnum><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>Traditional portfolio selection models mainly obtain the optimized portfolio ratio by focusing on the prices of financial products. However, investors’ multiple preferences and risk appetites are also significant factors that should be taken into account. In consideration of these two factors simultaneously, we propose a double-hierarchy model in this paper. Specifically, the first hierarchy quantifies investors’ risk appetite based on a historical simulation method and probabilistic preference theory. This hierarchy can be utilized to describe investors’ variable risk appetites and ensure the obtained investment ratios meet investors’ immediate risk requirements. Then, using the cross-efficiency evaluation principle, the optimal investment ratios can be derived by fusing investors’ multiple preferences and risk appetites in the second hierarchy. Lastly, an illustrative example about evaluating the 10 largest capitalized stocks on the Shenzhen Stock Exchange is given to verify the feasibility and effectiveness of our newly proposed model. We make the theoretical contribution to improve the traditional portfolio selection model, especially considering investors’ subjective preferences and risk appetite. Moreover, the proposed model can be practical for assisting investors with their investment strategies in real life.</abstract><cop>LONDON</cop><pub>Hindawi</pub><doi>10.1155/2021/5512770</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2345-7674</orcidid><orcidid>https://orcid.org/0000-0002-8863-0132</orcidid><orcidid>https://orcid.org/0000-0001-9656-4561</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-2787
ispartof Complexity (New York, N.Y.), 2021, Vol.2021 (1), Article 5512770
issn 1076-2787
1099-0526
language eng
recordid cdi_hindawi_primary_10_1155_2021_5512770
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Algorithms
Attitudes
Efficiency
Investment policy
Investment strategy
Investments
Mathematics
Mathematics, Interdisciplinary Applications
Multidisciplinary Sciences
Physical Sciences
Preferences
Profitability
Profits
Rates of return
Science & Technology
Science & Technology - Other Topics
Stock exchanges
Venture capital
title Portfolio Selection with respect to the Probabilistic Preference in Variable Risk Appetites: A Double-Hierarchy Analysis Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hinda&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Portfolio%20Selection%20with%20respect%20to%20the%20Probabilistic%20Preference%20in%20Variable%20Risk%20Appetites:%20A%20Double-Hierarchy%20Analysis%20Method&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Gu,%20Ruitao&rft.date=2021&rft.volume=2021&rft.issue=1&rft.artnum=5512770&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2021/5512770&rft_dat=%3Cproquest_hinda%3E2520676507%3C/proquest_hinda%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520676507&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_bdbff9d145c142fea88c1d5e944f199e&rfr_iscdi=true