Generalized Pattern-Matching Conditions for Ck≀Sn

We derive several multivariable generating functions for a generalized pattern-matching condition on the wreath product Ck≀Sn of the cyclic group Ck and the symmetric group Sn. In particular, we derive the generating functions for the number of matches that occur in elements of Ck≀Sn for any pattern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISRN Combinatorics 2013-02, Vol.2013
Hauptverfasser: Kitaev, Sergey, Niedermaier, Andrew, Remmel, Jeffrey, Riehl, Manda
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title ISRN Combinatorics
container_volume 2013
creator Kitaev, Sergey
Niedermaier, Andrew
Remmel, Jeffrey
Riehl, Manda
description We derive several multivariable generating functions for a generalized pattern-matching condition on the wreath product Ck≀Sn of the cyclic group Ck and the symmetric group Sn. In particular, we derive the generating functions for the number of matches that occur in elements of Ck≀Sn for any pattern of length 2 by applying appropriate homomorphisms from the ring of symmetric functions over an infinite number of variables to simple symmetric function identities. This allows us to derive several natural analogues of the distribution of rises relative to the product order on elements of Ck≀Sn. Our research leads to connections to many known objects/structures yet to be explained combinatorially.
doi_str_mv 10.1155/2013/634823
format Article
fullrecord <record><control><sourceid>hindawi</sourceid><recordid>TN_cdi_hindawi_primary_10_1155_2013_634823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1155_2013_634823</sourcerecordid><originalsourceid>FETCH-hindawi_primary_10_1155_2013_6348233</originalsourceid><addsrcrecordid>eNpjYBA2NNAzNDQ11TcyMDTWNzM2sTAyZmLgNDKwNNC1sDQ05GDgLS7OMgACS0sLYzMDTgZj99S81KLEnMyq1BSFgMSSktSiPF3fxJLkjMy8dAXn_LyUzJLM_LxihbT8IgXn7EedDcF5PAysaYk5xam8UJqbQcvNNcTZQxeoJyWxPDO-oCgzN7GoMt7QIB7kmniQa-IhrjEmSTEAHO87OQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized Pattern-Matching Conditions for Ck≀Sn</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kitaev, Sergey ; Niedermaier, Andrew ; Remmel, Jeffrey ; Riehl, Manda</creator><contributor>Siemons, J. ; Georgiou, S. D.</contributor><creatorcontrib>Kitaev, Sergey ; Niedermaier, Andrew ; Remmel, Jeffrey ; Riehl, Manda ; Siemons, J. ; Georgiou, S. D.</creatorcontrib><description>We derive several multivariable generating functions for a generalized pattern-matching condition on the wreath product Ck≀Sn of the cyclic group Ck and the symmetric group Sn. In particular, we derive the generating functions for the number of matches that occur in elements of Ck≀Sn for any pattern of length 2 by applying appropriate homomorphisms from the ring of symmetric functions over an infinite number of variables to simple symmetric function identities. This allows us to derive several natural analogues of the distribution of rises relative to the product order on elements of Ck≀Sn. Our research leads to connections to many known objects/structures yet to be explained combinatorially.</description><identifier>EISSN: 2090-8911</identifier><identifier>DOI: 10.1155/2013/634823</identifier><language>eng</language><publisher>Hindawi Publishing Corporation</publisher><ispartof>ISRN Combinatorics, 2013-02, Vol.2013</ispartof><rights>Copyright © 2013 Sergey Kitaev et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7100-9596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Siemons, J.</contributor><contributor>Georgiou, S. D.</contributor><creatorcontrib>Kitaev, Sergey</creatorcontrib><creatorcontrib>Niedermaier, Andrew</creatorcontrib><creatorcontrib>Remmel, Jeffrey</creatorcontrib><creatorcontrib>Riehl, Manda</creatorcontrib><title>Generalized Pattern-Matching Conditions for Ck≀Sn</title><title>ISRN Combinatorics</title><description>We derive several multivariable generating functions for a generalized pattern-matching condition on the wreath product Ck≀Sn of the cyclic group Ck and the symmetric group Sn. In particular, we derive the generating functions for the number of matches that occur in elements of Ck≀Sn for any pattern of length 2 by applying appropriate homomorphisms from the ring of symmetric functions over an infinite number of variables to simple symmetric function identities. This allows us to derive several natural analogues of the distribution of rises relative to the product order on elements of Ck≀Sn. Our research leads to connections to many known objects/structures yet to be explained combinatorially.</description><issn>2090-8911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNpjYBA2NNAzNDQ11TcyMDTWNzM2sTAyZmLgNDKwNNC1sDQ05GDgLS7OMgACS0sLYzMDTgZj99S81KLEnMyq1BSFgMSSktSiPF3fxJLkjMy8dAXn_LyUzJLM_LxihbT8IgXn7EedDcF5PAysaYk5xam8UJqbQcvNNcTZQxeoJyWxPDO-oCgzN7GoMt7QIB7kmniQa-IhrjEmSTEAHO87OQ</recordid><startdate>20130213</startdate><enddate>20130213</enddate><creator>Kitaev, Sergey</creator><creator>Niedermaier, Andrew</creator><creator>Remmel, Jeffrey</creator><creator>Riehl, Manda</creator><general>Hindawi Publishing Corporation</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><orcidid>https://orcid.org/0000-0001-7100-9596</orcidid></search><sort><creationdate>20130213</creationdate><title>Generalized Pattern-Matching Conditions for Ck≀Sn</title><author>Kitaev, Sergey ; Niedermaier, Andrew ; Remmel, Jeffrey ; Riehl, Manda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hindawi_primary_10_1155_2013_6348233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitaev, Sergey</creatorcontrib><creatorcontrib>Niedermaier, Andrew</creatorcontrib><creatorcontrib>Remmel, Jeffrey</creatorcontrib><creatorcontrib>Riehl, Manda</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><jtitle>ISRN Combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitaev, Sergey</au><au>Niedermaier, Andrew</au><au>Remmel, Jeffrey</au><au>Riehl, Manda</au><au>Siemons, J.</au><au>Georgiou, S. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Pattern-Matching Conditions for Ck≀Sn</atitle><jtitle>ISRN Combinatorics</jtitle><date>2013-02-13</date><risdate>2013</risdate><volume>2013</volume><eissn>2090-8911</eissn><abstract>We derive several multivariable generating functions for a generalized pattern-matching condition on the wreath product Ck≀Sn of the cyclic group Ck and the symmetric group Sn. In particular, we derive the generating functions for the number of matches that occur in elements of Ck≀Sn for any pattern of length 2 by applying appropriate homomorphisms from the ring of symmetric functions over an infinite number of variables to simple symmetric function identities. This allows us to derive several natural analogues of the distribution of rises relative to the product order on elements of Ck≀Sn. Our research leads to connections to many known objects/structures yet to be explained combinatorially.</abstract><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2013/634823</doi><orcidid>https://orcid.org/0000-0001-7100-9596</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2090-8911
ispartof ISRN Combinatorics, 2013-02, Vol.2013
issn 2090-8911
language eng
recordid cdi_hindawi_primary_10_1155_2013_634823
source EZB-FREE-00999 freely available EZB journals
title Generalized Pattern-Matching Conditions for Ck≀Sn
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hindawi&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Pattern-Matching%20Conditions%20for%20Ck%E2%89%80Sn&rft.jtitle=ISRN%20Combinatorics&rft.au=Kitaev,%20Sergey&rft.date=2013-02-13&rft.volume=2013&rft.eissn=2090-8911&rft_id=info:doi/10.1155/2013/634823&rft_dat=%3Chindawi%3E10_1155_2013_634823%3C/hindawi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true