Hamiltonian long–wave expansions for water waves over a rough bottom

89–102) on periodic bottoms for two–dimensional flows.We take the point of view of perturbation of a Hamiltonian system dependent on a small scaling parameter, with the starting point being Zakharov's Hamiltonian (V. E. Zakharov 1968 J. Appl. Mech. Tech. Phys. 9, 1990–1994) for the Euler equati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2005-03, Vol.461 (2055), p.839-873
Hauptverfasser: Craig, Walter, Guyenne, Philippe, Nicholls, David P., Sulem, Catherine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 873
container_issue 2055
container_start_page 839
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 461
creator Craig, Walter
Guyenne, Philippe
Nicholls, David P.
Sulem, Catherine
description 89–102) on periodic bottoms for two–dimensional flows.We take the point of view of perturbation of a Hamiltonian system dependent on a small scaling parameter, with the starting point being Zakharov's Hamiltonian (V. E. Zakharov 1968 J. Appl. Mech. Tech. Phys. 9, 1990–1994) for the Euler equations for water waves. We consider bottom topography which is periodic in horizontal variables on a short length–scale, with the amplitude of variation being of the same order as the fluid depth. The bottom may also exhibit slow variations at the same length–scale as, or longer than, the order of the wavelength of the surface waves. We do not take up the question of random bottom variations, a topic which is considered in Rosales & Papanicolaou (1983). In the two–dimensional case of waves in a channel, we give an alternate derivation of the effective Korteweg–de Vries (KdV) equation that is obtained in Rosales & Papanicolaou (1983). In addition, we obtain effective Boussinesq equations that describe the motion of bidirectional long waves, in cases in which the bottom possesses both short and long–scale variations. In certain cases we also obtain unidirectional equations that are similar to the KdV equation. In three dimensions we obtain effective three–dimensional long–wave equations in a Boussinesq scaling regime, and again in certain cases an effective Kadomtsev–Petviashvili (KP) system in the appropriate unidirectional limit.
doi_str_mv 10.1098/rspa.2004.1367
format Article
fullrecord <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_highwire_royalsociety_royprsa_461_2055_839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30046320</jstor_id><sourcerecordid>30046320</sourcerecordid><originalsourceid>FETCH-LOGICAL-a504t-60ea0190250b8558e57ccafaf2562ae4d0cc5f2ff4de6174db54a187bc6669fc3</originalsourceid><addsrcrecordid>eNp9kE1OwzAUhCMEEqWwZYeUC6TYie0kK4QKpaAKkPjZWq-u3aakcWS7fzvuwA05CY6CKnUBG_s9zXz2aILgHKMeRnl2aWwNvRgh0sMJSw-CDiYpjuKcsEM_J4xEFMX4ODixdo4QymmWdoLBEBZF6XRVQBWWupp-f36tYSVDuamhsoWubKi0CdfgZHOupA31yo8QGr2czsKxdk4vToMjBaWVZ793N3gb3L72h9Ho6e6-fz2KgCLiIoYkIJyjmKJxRmkmaSoEKFAxZTFIMkFCUBUrRSaS4ZRMxpQAztKxYIzlSiTdoNe-K4y21kjFa1MswGw5RrxpgTct8KYF3rTggaQFjN76YFoU0m35XC9N5de_qYuWmlunze6PxBtYEiOvR61eWCc3Ox3MB_d0Svl7RvjLwyPpD59veOPHrX9WTGfrwki-F8cvtbHACcM-BKU8S3LPXP3LNImFrpys3B7I1bIseT1RyQ-LwKV2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hamiltonian long–wave expansions for water waves over a rough bottom</title><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Craig, Walter ; Guyenne, Philippe ; Nicholls, David P. ; Sulem, Catherine</creator><creatorcontrib>Craig, Walter ; Guyenne, Philippe ; Nicholls, David P. ; Sulem, Catherine</creatorcontrib><description>89–102) on periodic bottoms for two–dimensional flows.We take the point of view of perturbation of a Hamiltonian system dependent on a small scaling parameter, with the starting point being Zakharov's Hamiltonian (V. E. Zakharov 1968 J. Appl. Mech. Tech. Phys. 9, 1990–1994) for the Euler equations for water waves. We consider bottom topography which is periodic in horizontal variables on a short length–scale, with the amplitude of variation being of the same order as the fluid depth. The bottom may also exhibit slow variations at the same length–scale as, or longer than, the order of the wavelength of the surface waves. We do not take up the question of random bottom variations, a topic which is considered in Rosales &amp; Papanicolaou (1983). In the two–dimensional case of waves in a channel, we give an alternate derivation of the effective Korteweg–de Vries (KdV) equation that is obtained in Rosales &amp; Papanicolaou (1983). In addition, we obtain effective Boussinesq equations that describe the motion of bidirectional long waves, in cases in which the bottom possesses both short and long–scale variations. In certain cases we also obtain unidirectional equations that are similar to the KdV equation. In three dimensions we obtain effective three–dimensional long–wave equations in a Boussinesq scaling regime, and again in certain cases an effective Kadomtsev–Petviashvili (KP) system in the appropriate unidirectional limit.</description><description>The computations for these results are performed in the framework of an asymptotic analysis of multiple–scale operators. In the present case this involves the Dirichlet–Neumann operator for the fluid domain which takes into account the variations in bottom topography as well as the deformations of the free surface from equilibrium.</description><description>This paper is a study of the problem of nonlinear wave motion of the free surface of a body of fluid with a periodically varying bottom. The object is to describe the character of wave propagation in a long–wave asymptotic regime, extending the results of R. Rosales &amp; G. Papanicolaou (1983 Stud. Appl. Math.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2004.1367</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Amplitude ; Approximation ; Boundary conditions ; Coefficients ; Equations of motion ; Hamiltonian Perturbation Theory ; Long-Wave Asymptotics ; Mathematical expressions ; Nonlinearity ; Variable coefficients ; Variable Depth ; Water Waves ; Waves</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2005-03, Vol.461 (2055), p.839-873</ispartof><rights>Copyright 2005 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a504t-60ea0190250b8558e57ccafaf2562ae4d0cc5f2ff4de6174db54a187bc6669fc3</citedby><cites>FETCH-LOGICAL-a504t-60ea0190250b8558e57ccafaf2562ae4d0cc5f2ff4de6174db54a187bc6669fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30046320$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30046320$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Craig, Walter</creatorcontrib><creatorcontrib>Guyenne, Philippe</creatorcontrib><creatorcontrib>Nicholls, David P.</creatorcontrib><creatorcontrib>Sulem, Catherine</creatorcontrib><title>Hamiltonian long–wave expansions for water waves over a rough bottom</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>89–102) on periodic bottoms for two–dimensional flows.We take the point of view of perturbation of a Hamiltonian system dependent on a small scaling parameter, with the starting point being Zakharov's Hamiltonian (V. E. Zakharov 1968 J. Appl. Mech. Tech. Phys. 9, 1990–1994) for the Euler equations for water waves. We consider bottom topography which is periodic in horizontal variables on a short length–scale, with the amplitude of variation being of the same order as the fluid depth. The bottom may also exhibit slow variations at the same length–scale as, or longer than, the order of the wavelength of the surface waves. We do not take up the question of random bottom variations, a topic which is considered in Rosales &amp; Papanicolaou (1983). In the two–dimensional case of waves in a channel, we give an alternate derivation of the effective Korteweg–de Vries (KdV) equation that is obtained in Rosales &amp; Papanicolaou (1983). In addition, we obtain effective Boussinesq equations that describe the motion of bidirectional long waves, in cases in which the bottom possesses both short and long–scale variations. In certain cases we also obtain unidirectional equations that are similar to the KdV equation. In three dimensions we obtain effective three–dimensional long–wave equations in a Boussinesq scaling regime, and again in certain cases an effective Kadomtsev–Petviashvili (KP) system in the appropriate unidirectional limit.</description><description>The computations for these results are performed in the framework of an asymptotic analysis of multiple–scale operators. In the present case this involves the Dirichlet–Neumann operator for the fluid domain which takes into account the variations in bottom topography as well as the deformations of the free surface from equilibrium.</description><description>This paper is a study of the problem of nonlinear wave motion of the free surface of a body of fluid with a periodically varying bottom. The object is to describe the character of wave propagation in a long–wave asymptotic regime, extending the results of R. Rosales &amp; G. Papanicolaou (1983 Stud. Appl. Math.</description><subject>Amplitude</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Coefficients</subject><subject>Equations of motion</subject><subject>Hamiltonian Perturbation Theory</subject><subject>Long-Wave Asymptotics</subject><subject>Mathematical expressions</subject><subject>Nonlinearity</subject><subject>Variable coefficients</subject><subject>Variable Depth</subject><subject>Water Waves</subject><subject>Waves</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAUhCMEEqWwZYeUC6TYie0kK4QKpaAKkPjZWq-u3aakcWS7fzvuwA05CY6CKnUBG_s9zXz2aILgHKMeRnl2aWwNvRgh0sMJSw-CDiYpjuKcsEM_J4xEFMX4ODixdo4QymmWdoLBEBZF6XRVQBWWupp-f36tYSVDuamhsoWubKi0CdfgZHOupA31yo8QGr2czsKxdk4vToMjBaWVZ793N3gb3L72h9Ho6e6-fz2KgCLiIoYkIJyjmKJxRmkmaSoEKFAxZTFIMkFCUBUrRSaS4ZRMxpQAztKxYIzlSiTdoNe-K4y21kjFa1MswGw5RrxpgTct8KYF3rTggaQFjN76YFoU0m35XC9N5de_qYuWmlunze6PxBtYEiOvR61eWCc3Ox3MB_d0Svl7RvjLwyPpD59veOPHrX9WTGfrwki-F8cvtbHACcM-BKU8S3LPXP3LNImFrpys3B7I1bIseT1RyQ-LwKV2</recordid><startdate>20050308</startdate><enddate>20050308</enddate><creator>Craig, Walter</creator><creator>Guyenne, Philippe</creator><creator>Nicholls, David P.</creator><creator>Sulem, Catherine</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050308</creationdate><title>Hamiltonian long–wave expansions for water waves over a rough bottom</title><author>Craig, Walter ; Guyenne, Philippe ; Nicholls, David P. ; Sulem, Catherine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a504t-60ea0190250b8558e57ccafaf2562ae4d0cc5f2ff4de6174db54a187bc6669fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amplitude</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Coefficients</topic><topic>Equations of motion</topic><topic>Hamiltonian Perturbation Theory</topic><topic>Long-Wave Asymptotics</topic><topic>Mathematical expressions</topic><topic>Nonlinearity</topic><topic>Variable coefficients</topic><topic>Variable Depth</topic><topic>Water Waves</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Craig, Walter</creatorcontrib><creatorcontrib>Guyenne, Philippe</creatorcontrib><creatorcontrib>Nicholls, David P.</creatorcontrib><creatorcontrib>Sulem, Catherine</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Craig, Walter</au><au>Guyenne, Philippe</au><au>Nicholls, David P.</au><au>Sulem, Catherine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hamiltonian long–wave expansions for water waves over a rough bottom</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2005-03-08</date><risdate>2005</risdate><volume>461</volume><issue>2055</issue><spage>839</spage><epage>873</epage><pages>839-873</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>89–102) on periodic bottoms for two–dimensional flows.We take the point of view of perturbation of a Hamiltonian system dependent on a small scaling parameter, with the starting point being Zakharov's Hamiltonian (V. E. Zakharov 1968 J. Appl. Mech. Tech. Phys. 9, 1990–1994) for the Euler equations for water waves. We consider bottom topography which is periodic in horizontal variables on a short length–scale, with the amplitude of variation being of the same order as the fluid depth. The bottom may also exhibit slow variations at the same length–scale as, or longer than, the order of the wavelength of the surface waves. We do not take up the question of random bottom variations, a topic which is considered in Rosales &amp; Papanicolaou (1983). In the two–dimensional case of waves in a channel, we give an alternate derivation of the effective Korteweg–de Vries (KdV) equation that is obtained in Rosales &amp; Papanicolaou (1983). In addition, we obtain effective Boussinesq equations that describe the motion of bidirectional long waves, in cases in which the bottom possesses both short and long–scale variations. In certain cases we also obtain unidirectional equations that are similar to the KdV equation. In three dimensions we obtain effective three–dimensional long–wave equations in a Boussinesq scaling regime, and again in certain cases an effective Kadomtsev–Petviashvili (KP) system in the appropriate unidirectional limit.</abstract><abstract>The computations for these results are performed in the framework of an asymptotic analysis of multiple–scale operators. In the present case this involves the Dirichlet–Neumann operator for the fluid domain which takes into account the variations in bottom topography as well as the deformations of the free surface from equilibrium.</abstract><abstract>This paper is a study of the problem of nonlinear wave motion of the free surface of a body of fluid with a periodically varying bottom. The object is to describe the character of wave propagation in a long–wave asymptotic regime, extending the results of R. Rosales &amp; G. Papanicolaou (1983 Stud. Appl. Math.</abstract><pub>The Royal Society</pub><doi>10.1098/rspa.2004.1367</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2005-03, Vol.461 (2055), p.839-873
issn 1364-5021
1471-2946
language eng
recordid cdi_highwire_royalsociety_royprsa_461_2055_839
source Jstor Complete Legacy; Alma/SFX Local Collection; JSTOR Mathematics & Statistics
subjects Amplitude
Approximation
Boundary conditions
Coefficients
Equations of motion
Hamiltonian Perturbation Theory
Long-Wave Asymptotics
Mathematical expressions
Nonlinearity
Variable coefficients
Variable Depth
Water Waves
Waves
title Hamiltonian long–wave expansions for water waves over a rough bottom
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hamiltonian%20long%E2%80%93wave%20expansions%20for%20water%20waves%20over%20a%20rough%20bottom&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Craig,%20Walter&rft.date=2005-03-08&rft.volume=461&rft.issue=2055&rft.spage=839&rft.epage=873&rft.pages=839-873&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2004.1367&rft_dat=%3Cjstor_highw%3E30046320%3C/jstor_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=30046320&rfr_iscdi=true