Hamiltonian long–wave expansions for water waves over a rough bottom
89–102) on periodic bottoms for two–dimensional flows.We take the point of view of perturbation of a Hamiltonian system dependent on a small scaling parameter, with the starting point being Zakharov's Hamiltonian (V. E. Zakharov 1968 J. Appl. Mech. Tech. Phys. 9, 1990–1994) for the Euler equati...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2005-03, Vol.461 (2055), p.839-873 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 873 |
---|---|
container_issue | 2055 |
container_start_page | 839 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 461 |
creator | Craig, Walter Guyenne, Philippe Nicholls, David P. Sulem, Catherine |
description | 89–102) on periodic bottoms for two–dimensional flows.We take the point of view of perturbation of a Hamiltonian system
dependent on a small scaling parameter, with the starting point being Zakharov's Hamiltonian (V. E. Zakharov 1968 J. Appl.
Mech. Tech. Phys. 9, 1990–1994) for the Euler equations for water waves. We consider bottom topography which is periodic in
horizontal variables on a short length–scale, with the amplitude of variation being of the same order as the fluid depth.
The bottom may also exhibit slow variations at the same length–scale as, or longer than, the order of the wavelength of the
surface waves. We do not take up the question of random bottom variations, a topic which is considered in Rosales & Papanicolaou
(1983). In the two–dimensional case of waves in a channel, we give an alternate derivation of the effective Korteweg–de Vries
(KdV) equation that is obtained in Rosales & Papanicolaou (1983). In addition, we obtain effective Boussinesq equations that
describe the motion of bidirectional long waves, in cases in which the bottom possesses both short and long–scale variations.
In certain cases we also obtain unidirectional equations that are similar to the KdV equation. In three dimensions we obtain
effective three–dimensional long–wave equations in a Boussinesq scaling regime, and again in certain cases an effective Kadomtsev–Petviashvili
(KP) system in the appropriate unidirectional limit. |
doi_str_mv | 10.1098/rspa.2004.1367 |
format | Article |
fullrecord | <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_highwire_royalsociety_royprsa_461_2055_839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30046320</jstor_id><sourcerecordid>30046320</sourcerecordid><originalsourceid>FETCH-LOGICAL-a504t-60ea0190250b8558e57ccafaf2562ae4d0cc5f2ff4de6174db54a187bc6669fc3</originalsourceid><addsrcrecordid>eNp9kE1OwzAUhCMEEqWwZYeUC6TYie0kK4QKpaAKkPjZWq-u3aakcWS7fzvuwA05CY6CKnUBG_s9zXz2aILgHKMeRnl2aWwNvRgh0sMJSw-CDiYpjuKcsEM_J4xEFMX4ODixdo4QymmWdoLBEBZF6XRVQBWWupp-f36tYSVDuamhsoWubKi0CdfgZHOupA31yo8QGr2czsKxdk4vToMjBaWVZ793N3gb3L72h9Ho6e6-fz2KgCLiIoYkIJyjmKJxRmkmaSoEKFAxZTFIMkFCUBUrRSaS4ZRMxpQAztKxYIzlSiTdoNe-K4y21kjFa1MswGw5RrxpgTct8KYF3rTggaQFjN76YFoU0m35XC9N5de_qYuWmlunze6PxBtYEiOvR61eWCc3Ox3MB_d0Svl7RvjLwyPpD59veOPHrX9WTGfrwki-F8cvtbHACcM-BKU8S3LPXP3LNImFrpys3B7I1bIseT1RyQ-LwKV2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hamiltonian long–wave expansions for water waves over a rough bottom</title><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics & Statistics</source><creator>Craig, Walter ; Guyenne, Philippe ; Nicholls, David P. ; Sulem, Catherine</creator><creatorcontrib>Craig, Walter ; Guyenne, Philippe ; Nicholls, David P. ; Sulem, Catherine</creatorcontrib><description>89–102) on periodic bottoms for two–dimensional flows.We take the point of view of perturbation of a Hamiltonian system
dependent on a small scaling parameter, with the starting point being Zakharov's Hamiltonian (V. E. Zakharov 1968 J. Appl.
Mech. Tech. Phys. 9, 1990–1994) for the Euler equations for water waves. We consider bottom topography which is periodic in
horizontal variables on a short length–scale, with the amplitude of variation being of the same order as the fluid depth.
The bottom may also exhibit slow variations at the same length–scale as, or longer than, the order of the wavelength of the
surface waves. We do not take up the question of random bottom variations, a topic which is considered in Rosales & Papanicolaou
(1983). In the two–dimensional case of waves in a channel, we give an alternate derivation of the effective Korteweg–de Vries
(KdV) equation that is obtained in Rosales & Papanicolaou (1983). In addition, we obtain effective Boussinesq equations that
describe the motion of bidirectional long waves, in cases in which the bottom possesses both short and long–scale variations.
In certain cases we also obtain unidirectional equations that are similar to the KdV equation. In three dimensions we obtain
effective three–dimensional long–wave equations in a Boussinesq scaling regime, and again in certain cases an effective Kadomtsev–Petviashvili
(KP) system in the appropriate unidirectional limit.</description><description>The computations for these results are performed in the framework of an asymptotic analysis of multiple–scale operators. In
the present case this involves the Dirichlet–Neumann operator for the fluid domain which takes into account the variations
in bottom topography as well as the deformations of the free surface from equilibrium.</description><description>This paper is a study of the problem of nonlinear wave motion of the free surface of a body of fluid with a periodically varying
bottom. The object is to describe the character of wave propagation in a long–wave asymptotic regime, extending the results
of R. Rosales & G. Papanicolaou (1983 Stud. Appl. Math.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2004.1367</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Amplitude ; Approximation ; Boundary conditions ; Coefficients ; Equations of motion ; Hamiltonian Perturbation Theory ; Long-Wave Asymptotics ; Mathematical expressions ; Nonlinearity ; Variable coefficients ; Variable Depth ; Water Waves ; Waves</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2005-03, Vol.461 (2055), p.839-873</ispartof><rights>Copyright 2005 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a504t-60ea0190250b8558e57ccafaf2562ae4d0cc5f2ff4de6174db54a187bc6669fc3</citedby><cites>FETCH-LOGICAL-a504t-60ea0190250b8558e57ccafaf2562ae4d0cc5f2ff4de6174db54a187bc6669fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30046320$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30046320$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Craig, Walter</creatorcontrib><creatorcontrib>Guyenne, Philippe</creatorcontrib><creatorcontrib>Nicholls, David P.</creatorcontrib><creatorcontrib>Sulem, Catherine</creatorcontrib><title>Hamiltonian long–wave expansions for water waves over a rough bottom</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>89–102) on periodic bottoms for two–dimensional flows.We take the point of view of perturbation of a Hamiltonian system
dependent on a small scaling parameter, with the starting point being Zakharov's Hamiltonian (V. E. Zakharov 1968 J. Appl.
Mech. Tech. Phys. 9, 1990–1994) for the Euler equations for water waves. We consider bottom topography which is periodic in
horizontal variables on a short length–scale, with the amplitude of variation being of the same order as the fluid depth.
The bottom may also exhibit slow variations at the same length–scale as, or longer than, the order of the wavelength of the
surface waves. We do not take up the question of random bottom variations, a topic which is considered in Rosales & Papanicolaou
(1983). In the two–dimensional case of waves in a channel, we give an alternate derivation of the effective Korteweg–de Vries
(KdV) equation that is obtained in Rosales & Papanicolaou (1983). In addition, we obtain effective Boussinesq equations that
describe the motion of bidirectional long waves, in cases in which the bottom possesses both short and long–scale variations.
In certain cases we also obtain unidirectional equations that are similar to the KdV equation. In three dimensions we obtain
effective three–dimensional long–wave equations in a Boussinesq scaling regime, and again in certain cases an effective Kadomtsev–Petviashvili
(KP) system in the appropriate unidirectional limit.</description><description>The computations for these results are performed in the framework of an asymptotic analysis of multiple–scale operators. In
the present case this involves the Dirichlet–Neumann operator for the fluid domain which takes into account the variations
in bottom topography as well as the deformations of the free surface from equilibrium.</description><description>This paper is a study of the problem of nonlinear wave motion of the free surface of a body of fluid with a periodically varying
bottom. The object is to describe the character of wave propagation in a long–wave asymptotic regime, extending the results
of R. Rosales & G. Papanicolaou (1983 Stud. Appl. Math.</description><subject>Amplitude</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Coefficients</subject><subject>Equations of motion</subject><subject>Hamiltonian Perturbation Theory</subject><subject>Long-Wave Asymptotics</subject><subject>Mathematical expressions</subject><subject>Nonlinearity</subject><subject>Variable coefficients</subject><subject>Variable Depth</subject><subject>Water Waves</subject><subject>Waves</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAUhCMEEqWwZYeUC6TYie0kK4QKpaAKkPjZWq-u3aakcWS7fzvuwA05CY6CKnUBG_s9zXz2aILgHKMeRnl2aWwNvRgh0sMJSw-CDiYpjuKcsEM_J4xEFMX4ODixdo4QymmWdoLBEBZF6XRVQBWWupp-f36tYSVDuamhsoWubKi0CdfgZHOupA31yo8QGr2czsKxdk4vToMjBaWVZ793N3gb3L72h9Ho6e6-fz2KgCLiIoYkIJyjmKJxRmkmaSoEKFAxZTFIMkFCUBUrRSaS4ZRMxpQAztKxYIzlSiTdoNe-K4y21kjFa1MswGw5RrxpgTct8KYF3rTggaQFjN76YFoU0m35XC9N5de_qYuWmlunze6PxBtYEiOvR61eWCc3Ox3MB_d0Svl7RvjLwyPpD59veOPHrX9WTGfrwki-F8cvtbHACcM-BKU8S3LPXP3LNImFrpys3B7I1bIseT1RyQ-LwKV2</recordid><startdate>20050308</startdate><enddate>20050308</enddate><creator>Craig, Walter</creator><creator>Guyenne, Philippe</creator><creator>Nicholls, David P.</creator><creator>Sulem, Catherine</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050308</creationdate><title>Hamiltonian long–wave expansions for water waves over a rough bottom</title><author>Craig, Walter ; Guyenne, Philippe ; Nicholls, David P. ; Sulem, Catherine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a504t-60ea0190250b8558e57ccafaf2562ae4d0cc5f2ff4de6174db54a187bc6669fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amplitude</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Coefficients</topic><topic>Equations of motion</topic><topic>Hamiltonian Perturbation Theory</topic><topic>Long-Wave Asymptotics</topic><topic>Mathematical expressions</topic><topic>Nonlinearity</topic><topic>Variable coefficients</topic><topic>Variable Depth</topic><topic>Water Waves</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Craig, Walter</creatorcontrib><creatorcontrib>Guyenne, Philippe</creatorcontrib><creatorcontrib>Nicholls, David P.</creatorcontrib><creatorcontrib>Sulem, Catherine</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Craig, Walter</au><au>Guyenne, Philippe</au><au>Nicholls, David P.</au><au>Sulem, Catherine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hamiltonian long–wave expansions for water waves over a rough bottom</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2005-03-08</date><risdate>2005</risdate><volume>461</volume><issue>2055</issue><spage>839</spage><epage>873</epage><pages>839-873</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>89–102) on periodic bottoms for two–dimensional flows.We take the point of view of perturbation of a Hamiltonian system
dependent on a small scaling parameter, with the starting point being Zakharov's Hamiltonian (V. E. Zakharov 1968 J. Appl.
Mech. Tech. Phys. 9, 1990–1994) for the Euler equations for water waves. We consider bottom topography which is periodic in
horizontal variables on a short length–scale, with the amplitude of variation being of the same order as the fluid depth.
The bottom may also exhibit slow variations at the same length–scale as, or longer than, the order of the wavelength of the
surface waves. We do not take up the question of random bottom variations, a topic which is considered in Rosales & Papanicolaou
(1983). In the two–dimensional case of waves in a channel, we give an alternate derivation of the effective Korteweg–de Vries
(KdV) equation that is obtained in Rosales & Papanicolaou (1983). In addition, we obtain effective Boussinesq equations that
describe the motion of bidirectional long waves, in cases in which the bottom possesses both short and long–scale variations.
In certain cases we also obtain unidirectional equations that are similar to the KdV equation. In three dimensions we obtain
effective three–dimensional long–wave equations in a Boussinesq scaling regime, and again in certain cases an effective Kadomtsev–Petviashvili
(KP) system in the appropriate unidirectional limit.</abstract><abstract>The computations for these results are performed in the framework of an asymptotic analysis of multiple–scale operators. In
the present case this involves the Dirichlet–Neumann operator for the fluid domain which takes into account the variations
in bottom topography as well as the deformations of the free surface from equilibrium.</abstract><abstract>This paper is a study of the problem of nonlinear wave motion of the free surface of a body of fluid with a periodically varying
bottom. The object is to describe the character of wave propagation in a long–wave asymptotic regime, extending the results
of R. Rosales & G. Papanicolaou (1983 Stud. Appl. Math.</abstract><pub>The Royal Society</pub><doi>10.1098/rspa.2004.1367</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2005-03, Vol.461 (2055), p.839-873 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_highwire_royalsociety_royprsa_461_2055_839 |
source | Jstor Complete Legacy; Alma/SFX Local Collection; JSTOR Mathematics & Statistics |
subjects | Amplitude Approximation Boundary conditions Coefficients Equations of motion Hamiltonian Perturbation Theory Long-Wave Asymptotics Mathematical expressions Nonlinearity Variable coefficients Variable Depth Water Waves Waves |
title | Hamiltonian long–wave expansions for water waves over a rough bottom |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hamiltonian%20long%E2%80%93wave%20expansions%20for%20water%20waves%20over%20a%20rough%20bottom&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Craig,%20Walter&rft.date=2005-03-08&rft.volume=461&rft.issue=2055&rft.spage=839&rft.epage=873&rft.pages=839-873&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2004.1367&rft_dat=%3Cjstor_highw%3E30046320%3C/jstor_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=30046320&rfr_iscdi=true |